Modbus Protocol

COMMUNICATIONS MANUAL

$800^{\text {Pus }}$

Universal Digital Panel Meters, Counters, Timers and Transmitters, Series 2
 Now with Ethernet

2 Dart Rd, Newnan, GA 30265, USA Phone: 770-251-8700, Fax: 770-251-2088 http://www.yca.com

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS 2
2. INTRODUCTION, MODBUS PROTOCOL 3
3. MODBUS CONNECTION EXAMPLES 4
4. JUMPER SETTINGS \& FIELD WIRING 5
5. PROGRAMMING YOUR MODBUS DEVICE 9
6. MODBUS PROTOCOL IMPLEMENTATION 10
7. General 10
8. Framing 10
9. Electrical Interface 11
10. Parameters Selectable via Instrument Setup (IS) Software 11
11. Parameters Selectable via Front Panel Meter Setup 11
12. Supported Function Codes 11
13. Register Numbers vs. Meter Addresses 11
14. Supported Exception Response Codes 14
15. Message Formatting 14
16. Message Examples for Device Address= 01, No Parity 15
17. Data Types Internal Registers 16
18. DPM \& Analog Input Transmitter Internal Register Addresses 17
19. Counter / Timer Internal Register Addresses 23
20. WARRANTY 32

2. INTRODUCTION, MODBUS PROTOCOL

The Modbus Protocol is an industry-standard communications protocol that is selectable with all our serial communications signal options: Ethernet, USB, RS485 and RS232. It is implemented by the microcomputer on the main board and is compliant with Modbus RTU or ASCII transmission modes (software selectable), as specified in Modbus over Serial Line Specification V1.0 (2002).

Digital panel meters, counters and timers require a plug-in option board for Modbus communications. This board can be any of the following:

- RS232 board
- RS485 board with dual RJ11 jacks.
- RS485 Modbus board with dual RJ45 jacks
- USB board
- USB-to-RS485 converter board
- Ethernet board
- Ethernet-to-RS485 converter board

Our RS485 and Modbus RS485 boards are both Modbus compliant, but the RS485 board uses RJ11 jacks while the Modbus board uses RJ45 jacks as recommended in the Modbus Specification. With either board, the two jacks are wired in parallel to allow daisy chaining of meters with no need for a hub.

Our USB-to-RS485 and Ethernet-to-RS485 converter boards allow the host meter to function as a normal meter, be connected to a host computer or Ethernet local area network (LAN), and also act as the device server for an RS485 network with up to 31 other meters equipped with an RS485 board. These meters can then be daisy-chained using readily available, straight-through 6 -wire data cables (not 4 -wire telephone cables or crossover cables). Use repeaters to increase the number of addressable meters.

Our DIN-rail transmitters come with a user-selectable Ethernet or RS232/RS485 I/O port in addition to a scalable 4-20 mA output, which is standard.

Our DIN-rail Ethernet-to-RS485 device server provides an RJ45 jack for connection to the Ethernet, an RJ11 jack to support an RS485 network of meters, plus screw terminals to support an RS485 network of DIN-rail transmitters via a set of 3 or 5 parallel wires (half- or full-duplex).

The Modbus TCP protocol is seamlessly converted by our Ethernet Nodes to Modbus RTU or Modbus ASCII for communication with meters and transmitters on an RS485 bus. Please see our Ethernet Manual for more information.

The Custom ASCII Protocol is a software-selectable alternative to the Modbus Protocol. It also allows device addressing of up to 31 devices. It is less complex than the Modbus protocol, but is limited to use with our devices. Please see our Custom ASCII Protocol Communications Manual.

3. MODBUS CONNECTION EXAMPLESS

Host computer

Meter with RS485 server board, Ethernet-to-serial or USB-to-serial

RS485 hub via RJ11 connectors and 6 -wire data cables

Meters with RS485 I/O boards, each with two RJ11 connectors

4. JUMPER SETTINGS \& FIELD WIRING

1. SAFETY WARNINGS

Digital panel meters, counters, timers and transmitters may be powered with AC (mains) from 85-264 Vac or $95-300 \mathrm{Vdc}$ with standard high voltage power, or $12-34 \mathrm{~V}$ ac or $10-48 \mathrm{Vdc}$ with the low voltage power supply option. To avoid the possibility of electrical shock or damaging short circuits, always unplug the device before opening the case. Please refer to the respective device manuals for full safety information and instruction on how to open the case. Signal wiring changes external to the case can be made safely while the units are under power.

2. JUMPERS ON SERIAL METER BOARDS

USB Board \& Basic Ethernet Board

No jumpers needed.

Ethernet

RS232 Board
e-Normal operation.
f - Slave display to RS232 from another meter.
\mathbf{g} - Pull-up resistor on RTS line.
Note: Board is shipped with jumpers e and \mathbf{g} installed

RS485-Modbus Board, Full Duplex Operation
b \& e - Bias jumpers should be installed on 1 board.
a \& d - Installed on last meter in long cable run.
RS485-Modbus Board, Half Duplex Operation
b \& e - bias jumpers installed on 1 board.
c \& f-installed for half duplex operation.
a - installed on last meter in line with long cable runs.

Note: Board is shipped with no jumpers installed.

RS485 Board, Full Duplex Operation

b \& d - Installed on last meter in long cable run.

RS485 Board, Half Duplex Operation

a \& c - Installed for half duplex operation.
d - Installed on last meter in line with long cable runs.
Note: Board is shipped with no jumpers installed.

Ethernet-to-RS485 Converter Board \& USB-to-RS485 Converter Board

Full Duplex Operation
No jumpers for short cable runs.

3. CONNECTOR WIRING, SERIAL BOARD TO COMPUTER

RS232 INTERFACE Computer

RS485 INTERFACE - FULL DUPLEX
RS485 INTERFACE - HALF DUPLEX
ISO GND BRX
ARX ATX
BTX
ISO GND

RS485-MODBUS - FULL DUPLEX

RS485-MODBUS - HALF DUPLEX

4. TRANSMITTER CONNECTOR WIRING

* The termination resistor jumper settings should only be selected if the transmitter is the last device on an RS485 line longer than 200 feet (60 m).
** Or jumper external BTX to BRX and ATX to ARX (same effect as internal jumpers).

Serial Signal	Duplex	Jumpers	Termination Resistor*
RS485	Full	None	$\mathrm{E} 6 \mathrm{a}=$ Transmit $\mathrm{E} 6 \mathrm{c}=$ Receive
	Half	$\mathrm{E6} \mathrm{~b}+\mathrm{d}^{* *}$	E6 c
RS232	Full	None	None

Serial Signal	Duplex	Jumpers	Termination Resistor*
RS485	Full	None	E6 $a=$ Transmit E6 $\mathrm{c}=$ Receive
	Half	E6 $\mathrm{b}+\mathrm{d}^{* *}$	E6 c
RS232	Full	None	None

* The termination resistor jumper settings should only be selected if the transmitter is the last device on an RS485 line longer than 200 feet (60 m).
** Attempting to draw more than the rated current will shut down the output.
To reset communications to 9600 baud, command mode, Custom ASCII protocol, and Address 1, place a jumper at E 1 and power up the transmitter.

Analog Output	Jumpers
Current	E2 $a+d$
Voltage	E2 $\mathrm{b}+\mathrm{c}$

Excitation Output *	Jumpers
$5 \mathrm{~V}, 100 \mathrm{~mA}$	$\mathrm{E} 3 \mathrm{a}+\mathrm{c} ; \mathrm{E} 4 \mathrm{a}$
$10 \mathrm{~V}, 120 \mathrm{~mA}$	$\mathrm{E} 3 \mathrm{a}+\mathrm{C} ; \mathrm{E} 4 \mathrm{~b}$
$24 \mathrm{~V}, 50 \mathrm{~mA}$	$\mathrm{E} 3 \mathrm{~b}, \mathrm{E} 4$ none

5. PROGRAMMING YOUR MODBUS DEVICE

OVERVIEW

Modbus digital panel meters, counters, timers and transmitters are easily programmed via their serial port using Windows-based Instrument Setup (IS) software, which provides a graphical user interface and is available at no charge. This software allows uploading, editing, downloading and saving of setup data, execution of commands under computer control, listing, plotting and graphing of data, and computer prompted calibration. Digital panel meters, counters and timers can also be programmed via their 4-key front panel as explained in their respective manuals; however, online programming is easier. For Ethernet, please see our separate Ethernet Manual.

GETTING STARTED WITH INSTRUMENT SETUP SOFTWARE

To install IS software, download the file instrument.exe from our website, double-click on the file name to extract three files, double-click on setup.exe, and follow the prompts. To launch IS software, press Start => Programs => IS2 => IS2. Establish communications by selecting matching settings between the instrument and PC , and click on Establish. Once communications have been established, click on Main Menu.

The best way to learn IS software is to experiment with it. From the Main Menu, click on Get Setup to retrieve (or get) the existing setup data from your device. Click on View $=>$ Setup to bring up screens which allow you to edit the setup file using pull-down menus and other selection tools. You can save your file to disk by clicking on File $=>$ Save Setup. You can download (or put) your edited file into the device by clicking on Put Setup. Programmable items will only be displayed if the appropriate hardware has been detected, such as the dual relay option for meters. Pressing the F1 key at any time will bring up detailed help information.

An analog output is defined in two steps. The input to the device is first scaled to a digital reading in engineering units, and this reading is then scaled to the analog output. The digital reading is also used for setpoint control and can be transmitted as serial data.

ADDITIONAL FEATURES

- The Commands pull-down menu allows you to execute certain functions by using your computer mouse. The Commands pull-down menu will be grayed out unless a Get Setup has been executed.
- The Readings pull-down menu provides three formats to display input data on your PC monitor. In all formats, use the Pause and Continue buttons to control the timing of data collection, then press Print for a hardcopy on your PC printer. List presents the latest digital readings in a 20 -row by 10 -column table. Plot generates a plot of digital readings vs. time in seconds, like an oscilloscope. Graph generates a histogram, where the horizontal axis is the reading and the vertical axis is the number of readings.

6. MODBUS PROTOCOL IMPLEMENTATION

1. GENERAL

The Modbus capability conforms to the Modbus over Serial Line Specification \& Implementation guide, V1.0. Both the Modbus RTU and Modbus ASCII protocols are implemented:

Modbus RTU

Baud Rate $300,600,1200,2400,4800,9600$ or 19200 Data Format 1 start bit, 8 data bits, 1 parity bit, 1 stop bit (11 bits total) Parity.................None, Odd, Even (if None, then 2 Stop bits for 11 total)
Address \qquad 0 for broadcast, 1-247 for individual meters

Modbus ASCII

Baud Rate \qquad $300,600,1200,2400,4800,9600$ or 19200 Data Format \qquad 1 Start bit, 7 Data bits, 1 Parity bit, 1 Stop bit (10 bits total) Parity \qquad None, Odd, Even (if None, then 2 Stop bits for 10 total) Address \qquad .0 for broadcast, 1-247 for individual meters

2. FRAMING

Modbus RTU

Message frames are separated by a silent interval of at least 3.5 character times. If a silent interval of more than 1.5 character times occurs between two characters of the message frame, the message frame is considered incomplete and is discarded. Frame Check = 16 bit CRC of the complete message excluding CRC characters.

Modbus ASCII

The message begins immediately following a colon (:) and ends just before a Carriage Return/ Line Feed (CRLF). All message characters are hexadecimal 0-9, A-F (ASCII coded). The system allowable time interval between characters may be set to $1,3,5$ or 10 seconds. Frame Check = 1 byte (2 hexadecimal characters) LRC of the message excluding the initial colon (:) and trailing LRC and CRLF characters.

3. ELECTRICAL INTERFACE

Four-wire (plus common) full-duplex or two-wire (plus common) half-duplex RS485 signal levels are jumper selectable for digital panel meters, counters and timers. A polarization resistor and termination resistor are also jumper selectable. In case of a long line (greater then 500 ft) to the first device, a termination resistor should be selected for the first device. In case of a long line length (greater then 500 ft) between the first and last devices, a termination resistor should be selected for the first and last devices. Never add termination resistors to more than two devices on the same line. A two-wire, half-duplex RS485 signal level is jumper selectable for transmitters.

4. PARAMETERS SELECTABLE VIA INSTRUMENT SETUP (IS) SOFTWARE

Serial Protocol ...Custom ASCII, Modbus RTU, Modbus ASCII
Modbus ASCII Gap Timeout.. 1 sec, 3 sec, 5 sec, 10 sec
Baud Rate...300, 600, 1200, 2400, 4800, 9600, 19200
Parity \qquad .No parity, 2 stop bits; odd parity, 1 stop bit; even parity, 1 stop bit
Device Address
. 0 to 247

5. PARAMETERS SELECTABLE VIA FRONT PANEL METER SETUP

The two menu items related specifically to Modbus setup are SEr_4 and Addr.

SEr_4 Serial Comm 4	000	01 Sec	2	5 Sec
	Modbus ASCII Gap Timeout	13 Sec	3	10 Sec
	000 Serial Protocol	0 Customl ASCII (Non-Modbus) 1 Modbus RTU 2 Modbus ASCII		
	$\begin{array}{\|l\|} \hline 000 \\ \text { Parity } \end{array}$	0 No Parity, 2 or more stop bits 1 Odd Parity, 1 or more stop bits 2 Even Parity, 1 or more stop bits		
Addr	000 Meter Address	Set to desired address 1-247		

The baud rate is set in SEr_1 per the Meter manual. The selection of Modbus RTU or Modbus ASCII in SEr_4 above overrides any LF or Command Mode selections that have been made, since they are determined by the Modbus protocol.

6. SUPPORTED FUNCTION CODES

FC03: Read Holding Registers. Reads internal registers containing setup parameters (Scale, Offset, Setpoints, etc.)
FCO4: Read Input Registers. Reads measurement values and alarm status
FC05: Write Single Coil. Action command to device
FC08: Diagnostics. Checks communications between Master and Slave.
FC10: Write Multiple Registers (FC10 = 16 dec). Writes internal registers containing setup parameters (Scale, Offset, Setpoints, etc.)

7. REGISTER NUMBERS VS. METER ADDRESSES

Some Master devices (e.g., Modicon) require that the desired Register Number and not the Register Address be entered. The Register Number is 1 higher than the Register Address. For entry to these devices, add 1 to the Register Address shown in the tables below. The Register Address shown will then be output from these devices.

FC04: Read Input Registers

Reads measurement values and alarm status. Returns values in M31 or 2 C32 format without decimal point (see Sec 11, p 16). The displayed system decimal point can be read with FC03 at addr 0057. Use only high word Starting Register Addresses and an even number of Registers.

Register Address		Meter or Analog Input Transmitter Response (M31 format)	Counter, Timer, or Pulse Input Transmitter Response (2C32 format)
Base 1 Std addr.	$\begin{gathered} \text { Base 0 } \\ \text { PLC addr. } \end{gathered}$		
0001	0002	Hi word of Alarm status	Hi word of Alarm status
0002	0003	Lo word of Alarm status	Lo word of Alarm status
0003	0004	Hi word of Measurement value *	Hi word of Item 1 value
0004	0005	Lo word of Measurement value *	Lo word of Item 1 value
0005	0006	Hi word of Peak value	Hi word of Peak value
0006	0007	Lo word of Peak value	Lo word of Peak value
0007	0008	Hi word of Valley value **	Hi word of Valley value
0008	0009	Lo word of Valley value **	Lo word of Valley value
0009	00 OA	N/A	Hi word of Item 2 value
00 OA	00 OB	N/A	Lo word of Item 2 value
00 0B	000 C	N/A	Hi word of Item 3 value
00 OC	00 0D	N/A	Lo word of Item 3 value

* Net value for Scale Meter. ** Gross value for Scale Meter.

FCO5: Write Single Coil: Action command to device

Output Address		Output Value	Action Command
Base 1	Base 0		
0001	0002	FF 00	Device Reset (No Response)
0002	0003	FF 00	Function Reset (Peak, Valley, latched alarms)
0003	0004	FF 00	Latched Alarm Reset (only)
0004	0005	FF 00	Peak Reset
0005	0006	FF 00	Valley Reset
0006	0007	FF 00	Remote Display Reset (Counters in Remote Display Mode)
0007	0008	FF 00	Display Item 1 (Meters, Counters, Timers)
0008	0009	FF 00	Display Item 2 (Counters, Timers)
0009	00 0A	FF 00	Display Item 3 (Counters, Timers)
00 0A	00 0B	FF 00	Display Peak (Meters, Counters, Timers)
00 OB	00 OC	FF 00	Display Valley (Meters except Weight, Counters, Timers)
00 0D	00 0E	FF 00	Meter Hold (output value = 0000 resets Meter Hold)
00 OE	00 OF	FF 00	Blank Display (output value $=0000$ resets Display Blank)
00 OF	0010	FF 00	Activate External Input A (output value $=0000$ deactivates)
0010	0011	FF 00	Activate External Input B (output value $=0000$ deactivates)

FC08: Diagnostics

Checks communications between the Master and Slave, and returns the count in the Modbus Slave counters (which are reset when the meter is reset).

Hex Sub Function Code	Data Sent	Response Data	Description
0000	Any	Same	Returns Query Data ($\mathrm{N} \times 2$ bytes). Echo Request.
0001	$\begin{aligned} & \text { FF } 00 \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { FF } 00 \\ & 0000 \end{aligned}$	Restarts Communications. If in the Listen-Only mode, no response occurs. Takes Slave out of the ListenOnly mode and one of the following: - Clears communications event counters. - Does not clear communications event counters.
0004	0000	None	Forces Listen-Only. All addressed and broadcast Messages are monitored and counters are incremented, but no action is taken or response sent. Only Sub-Function 0001 causes removal of this ListenOnly state.
00 OA	0000	0000	Clears all Modbus slave counters.
00 0B	0000	Total Message Count	Returns total number of messages detected on the bus, including those not addressed to this Slave. Excludes bad LRC/CRC, parity error or length <3.
00 OC	0000	Checksum Error Count	Returns total number of messages with bad LRC/ CRC, parity or length < 3 errors detected on the bus including those not addressed to the Slave.
00 OD	0000	Exception Error Count	Returns total number of Exception responses returned by the Addressed Slave or that would have been returned if not a broadcast message or if the Slave was not in a Listen-Only mode.
00 OE	0000	Slave Message Count	Returns total number of messages, either broadcast or addressed to the Slave. Excludes bad LRC/CRC, parity or length <3 errors.
00 OF	0000	No Response Count	Returns total number of messages, either broadcast or addressed to the Slave, for which Slave has returned No Response, neither a normal response nor an exception response. Excludes bad LRC/CRC, parity or length < 3 errors.
0011	0000	Slave Busy	Returns total number of Exception Code 6 (Slave Busy) responses.

8. SUPPORTED EXCEPTION RESPONSE CODES

Code	Name	Error Description
01	Illegal Function	Illegal Function Code for this Slave. Only hex Function Codes 03, 04, 05, 08, 10 (dec 16) are allowed.
02	Illegal Data Address	Illegal Register Address for this Slave and/or Register Length.
03	Illegal Data Value	Illegal data value or data length for the Modbus protocol.
04	Slave Device Failure	Slave device failure (eg. Device set for external gate).

9. MESSAGE FORMATTING

MA $=$ Meter Address	DD $=$ Data (Hex)	CL $=$ CRC Lo Byte
FC $=$ Function Code	WW $=$ Data $($ On/Off $)$	CH $=$ CRC Hi Byte
RA $=$ Register Address	SF $=$ Sub-Function	CR $=$ Carriage Return
NR $=$ Number of Registers	EC $=$ Error Code	LF $=$ Line Feed
NB $=$ Number of bytes	LRC $=$ ASCII Checksum	

Modbus RTU Format

FC	Action	$\begin{aligned} & >3.5 \\ & \text { Char } \end{aligned}$	Byte Number										
			1	2	3	4	5	6	7	8	9	10	11
$\begin{aligned} & \hline 03 \\ & 03 \end{aligned}$	Request Response	$\begin{aligned} & \hline \text { NoTx } \\ & \text { NoTx } \end{aligned}$	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { NB } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{RA} \\ \mathrm{DD}{ }^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline N R \\ D D^{*} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{NR} \\ \mathrm{CL} \end{array}$	$\begin{aligned} & \hline \mathrm{CL} \\ & \mathrm{CH} \end{aligned}$	CH			
$\begin{aligned} & \hline 04 \\ & 04 \end{aligned}$	Request Response	NoTx NoTx	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { NB } \end{aligned}$	$\begin{gathered} \hline \text { RA } \\ \text { مn* } \end{gathered}$	$\begin{array}{\|c\|} \hline N R \\ \text { DD* } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{NR} \\ \mathrm{CL} \end{array}$	$\begin{aligned} & \hline \mathrm{CL} \\ & \mathrm{CH} \end{aligned}$	CH			
$\begin{aligned} & 05 \\ & 05 \end{aligned}$	Request Response	$\begin{aligned} & \hline \text { NoTx } \\ & \text { NoTx } \end{aligned}$	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { RA } \end{aligned}$	$\begin{aligned} & \hline \mathrm{RA} \\ & \mathrm{RA} \end{aligned}$	WW WW	$\begin{array}{\|l\|} \hline \text { WW } \\ \text { WW } \end{array}$	$\begin{aligned} & \hline \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \hline \mathrm{CH} \\ & \mathrm{CH} \end{aligned}$			
08	Request Response	$\begin{aligned} & \hline \text { NoTx } \\ & \text { NoTx } \end{aligned}$	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { SF } \\ & \text { SF } \end{aligned}$	$\begin{aligned} & \hline \mathrm{SF} \\ & \mathrm{SF} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { WW } \\ D D \end{array}$	$\begin{array}{\|c\|} \hline \text { WW } \\ \text { DD } \end{array}$	$\begin{aligned} & \hline \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \hline \mathrm{CH} \\ & \mathrm{CH} \\ & \hline \end{aligned}$			
$\begin{aligned} & 10 \\ & 10 \end{aligned}$	Request Response	$\begin{aligned} & \hline \text { NoTx } \\ & \text { NoTx } \end{aligned}$	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { RA } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { RA } \end{aligned}$	$\begin{aligned} & \hline N R \\ & N R \end{aligned}$	$\begin{aligned} & \hline \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \hline \text { NB } \\ & \text { CL } \end{aligned}$	$\begin{gathered} \mathrm{DD}^{*} \\ \mathrm{CH} \end{gathered}$	DD*	CL	CH
	Exception Response	NoTx	MA	$\begin{gathered} \text { FC } \\ +80 \end{gathered}$	EC	CL	CH						

DD* = (DD DD) times NR (Number of Registers)

Modbus ASCII Format

Except for the colon, CR and LF, each column is 2 hex character bytes.
DD* $=(D D D D)$ times NR (Number of Registers)

FC	Action	Column Number												
		1	2	3	4	5	6	7	8	9	10	11	12	13
$\begin{aligned} & \hline 03 \\ & 03 \end{aligned}$	Request Response	:	$\begin{aligned} & \hline \text { MA } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { NB } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{RA} \\ \mathrm{DD}^{*} \end{array}$	$\begin{array}{\|c} \hline \text { NR } \\ \text { DD* } \end{array}$	$\begin{array}{\|c\|} \hline \text { NR } \\ \text { LRC } \end{array}$	$\begin{aligned} & \hline \text { LRC } \\ & \text { CR } \end{aligned}$	$\begin{aligned} & \hline \mathrm{CR} \\ & \mathrm{LF} \end{aligned}$	LF			
$\begin{aligned} & 04 \\ & 04 \\ & \hline \end{aligned}$	Request Response	:	$\begin{array}{\|l\|} \hline \text { MA } \\ \text { MA } \end{array}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \text { RA } \\ & \text { NB } \end{aligned}$	$\begin{gathered} \hline \text { RA } \\ D^{*} \end{gathered}$	$\begin{array}{\|c\|} \hline N R \\ D D^{*} \end{array}$	$\begin{array}{\|c\|} \hline \text { NR } \\ \text { LRC } \end{array}$	$\begin{aligned} & \hline \text { LRC } \\ & \text { CR } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{CR} \\ \mathrm{LF} \end{array}$	LF			
$\begin{aligned} & \hline 05 \\ & 05 \end{aligned}$	Request Response	:	$\begin{array}{\|l} \hline \text { MA } \\ \text { MA } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \mathrm{RA} \\ & \mathrm{RA} \end{aligned}$	$\begin{aligned} & \hline \mathrm{RA} \\ & \mathrm{RA} \end{aligned}$	$\begin{aligned} & \hline \text { WW } \\ & \text { WW } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { WW } \\ \text { WW } \end{array}$	$\begin{array}{\|l\|} \hline \text { LRC } \\ \text { LRC } \end{array}$	$\begin{array}{\|l\|} \hline C R \\ C R \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{LF} \\ & \mathrm{LF} \end{aligned}$			
$\begin{aligned} & \hline 08 \\ & 08 \end{aligned}$	Request Response		$\begin{array}{\|l} \hline \text { MA } \\ \text { MA } \end{array}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \text { SF } \\ & \text { SF } \end{aligned}$	$\begin{aligned} & \hline \mathrm{SF} \\ & \mathrm{SF} \end{aligned}$	$\begin{array}{\|l\|} \hline W W \\ D D^{*} \end{array}$	$\begin{array}{\|l\|} \hline W W \\ D D^{*} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LRC } \\ & \text { LRC } \end{aligned}$	$\begin{aligned} & \hline \text { CR } \\ & \text { CR } \end{aligned}$	$\begin{aligned} & \mathrm{LF} \\ & \mathrm{LF} \end{aligned}$			
$\begin{aligned} & 10 \\ & 10 \end{aligned}$	Request Response		$\begin{array}{\|l\|} \hline \text { MA } \\ \text { MA } \end{array}$	$\begin{aligned} & \hline \text { FC } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \hline \mathrm{RA} \\ & \mathrm{RA} \end{aligned}$	$\begin{aligned} & \hline \mathrm{RA} \\ & \mathrm{RA} \end{aligned}$	$\begin{aligned} & \hline \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \hline \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \hline \text { NB } \\ & \text { LRC } \end{aligned}$	$\begin{aligned} & \mathrm{DD}^{*} \\ & \mathrm{CR} \end{aligned}$	$\begin{gathered} \mathrm{DD}^{*} \\ \mathrm{LF} \end{gathered}$	LRC	CR	LF
Exce Resp	tion		MA	$\begin{gathered} \hline \text { FC } \\ +80 \end{gathered}$	EC	LRC	CR	LF						

10. MESSAGE EXAMPLES FOR DEVICE ADDRESS = 01, NO PARITY

Example	Action	Modbus RTU	Modbus ASCII
		Ser_4=010 Addr $=001$	Ser_4=020 Addr $=001$
Restart Communications*	Request Response	010800010000B1CB 010800010000B1CB	$\begin{aligned} & \hline: 010800010000 \text { F6crlf } \\ & : 010800010000 \text { F6crlf } \end{aligned}$
Meter Reset	Request Response	$\begin{array}{\|l} \hline 01050001 \text { FFOODDFA } \\ \text { None } \\ \hline \end{array}$:01050001FF00FAcrlf None
Digital Reading $=+25.18$	Request Response	$\begin{array}{\|l\|} \hline 01040003000281 C B \\ 010404000009 D 67 C 4 A \\ \hline \end{array}$	$\begin{aligned} & : 010400030002 \text { F6crlf } \\ & : 010404000009 \mathrm{D} 618 \mathrm{crlf} \end{aligned}$
Write Setpoint $1=+37.00$	Request Response	0110000100020400000 E743624 0110000100021008	$\begin{aligned} & : 0110000100020400000 E 7466 \mathrm{crlf} \\ & : 011000010002 \text { ECcrlf } \end{aligned}$
$\begin{aligned} & \text { Read Setpoint } 1 \\ & =+37.00 \end{aligned}$	Request Response	$\begin{aligned} & \text { 01030001000295CB } \\ & \text { 01030400000E74FE74 } \end{aligned}$	$\begin{aligned} & : 010300010002 \text { F9crlf } \\ & : 01030400000 \mathrm{E} 7476 \mathrm{crlf} \end{aligned}$
Send -12.34 to	First send decimal point, address 0057 as 0003.		
Remote Display or LTS **	Request Response	01100069000204FFFFFB2EF6E5 01100069000291 D4	$\begin{aligned} & : 01100069000204 \text { FFFFFB2E59crlf } \\ & : 01100069000284 \mathrm{crlf} \end{aligned}$

* Suggested as first message after power-up. If device is in Listen-Only mode, no response is returned.
** 1234 decimal $=000004$ D2 hex. $-1234=$ FF FF FB 2E in 4-byte 2's complement hex. Decimal point is ignored.
RTU: Bolded last 4 characters indicate the CRC (added automatically by the device).
ASCII: Bolded last 2 characters indicate the LRC ((added automatically by the device).

Because the Counter/Timer can provide up to 3 display items during normal operation, it can be used to provide additional features when used as a Remote Display. It is possible to send Remote Data to Item 3 using addresses 006B,C or 006D,E. If the Counter/Timer is set up with the "Source" menu item set to Item 3, it will make alarm comparisons to its Setpoints using the Remote Data. Likewise, the Analog Output will respond to the Remote Data if "AnSEt" selects Item 3 for the Analog Output source and the Display mode (Config Dig $3=7$).

Address 0069,A sends Remote Data to the display only (any Display mode).
Address 006B,C sends Remote Data to Item 3 only for Alarms and/or Analog Out.
Address 006D,E sends Remote Data to both the display and Item 3.

11. DATA TYPES INTERNAL REGISTERS

S = Sign Bit, $0=$ Positive, $1=$ Negative.
DDD $=$ Decimal Point $X X X X X X .=1\left(\right.$ Magnitude $\left.\times 10^{\wedge} 0\right)$
XXXXX.X $=2$ (Magnitude $\times 10^{\wedge}-1$)
XXXX.XX $=3$ (Magnitude $\times 10^{\wedge}-2$)
$X X X . X X X=4$ (Magnitude $\times 10^{\wedge}-3$)
XX.XXXX $=5$ (Magnitude $\left.\times 10^{\wedge}-4\right)$
$X . X X X X X=6$ (Magnitude $\times 10^{\wedge}-5$)

Note: Meters and the analog input transmitter only have 5 digits and 5 decimal points.

C = Bits of 2's Complement Binary Value
$\mathrm{M}=$ Bits of Positive Binary Magnitude
$B=$ Bits of Configuration Data
For Modbus RTU, each data character consists of 8 bits (or 1 byte).
For Modbus ASCII, each data character consists of 4 bits (or 1 hexadecimal nibble).
Data characters are sent most significant first, lease significant last.
2C32 Two's Complement (4 bytes)

Hi Word (Register)
CCCC CCCC CCCC CCCC

Lo Word (Register)
CCCC CCCC CCCC CCCC
M32 Binary Magnitude (4 bytes)
Hi Word (Register)
MMMM MMMM MMMM MMMM

Lo Word (Register)

MMMM MMMM MMMM MMMM

M31 Sign + Binary Magnitude (4 bytes)

Hi Word (Register)
SMMM MMMM MMMM MMMM

Lo Word (Register)

MMMM MMMM MMMM MMMM

M48 Binary Magnitude (6 bytes
Hi Word (Register) Mid Word (Register)
Lo Word (Register)
XXXX XXXX MMMM Ignore XXXX XXXX - Use LS 5-byte result

B16 Bit Significance

$\underline{\text { Hi Byte }}$	
00000000	
	Lo Byte BBBB BBBB 76543210

M16 Binary Magnitude
Hi Byte Lo Byte XXXX XXXX XXXX XXXX

M15 Sign + Binary Magnitude

Hi Byte -
Lo Byte $\overline{S X X X X X X X ~ X X X X X X X X}$

12. METER \& ANALOG INPUT TRANSMITTER INTERNAL REGISTER ADDRESSES

Data Types - as shown: FC03 READ and FC10 (dec16) WRITE
Use high word starting Register Addresses and an even number of Registers.

Register Address		Register Name	Data Type	Scaling \& Dec Point
Dec*	Hex*			
1	0001	Setpoint 1 (Hi word)	2 C 32	Dec pt same as displayed
2	0002	Setpoint 1 (Lo word)		
3	0003	Setpoint 2 (Hi word)	$2 C 32$	Dec pt same as displayed
4	0004	Setpoint 2 (Lo word)		
5	0005	Setpoint 3 (Hi word) (not for Scale Meter)	2 C 32	Dec pt same as displayed
6	0006	Setpoint 3 (Lo word) (not for Scale Meter)		
7	0007	Setpoint 4 (Hi word) (not for Scale Meter)	2 C 32	Dec pt same as displayed
8	0008	Setpoint 4 (Lo word) (not for Scale Meter)		
9	0009	Scale (Hi word)	2 C 2	** See footnote
10	000A	Scale (Low word)		
11	000B	Offset (Hi word)	2 C 32	Dec pt same as displayed
12	000C	Offset (Low word)		
17	0011	Lo In (Hi word)	2 C 32	Uses dec pt of input range
18	0012	Lo In (Low word)		
19	0013	Lo Rd (Hi word)	2 C 32	Dec pt same as displayed
20	0014	Lo Rd (Low word)		
21	0015	Hi In (Hi word)	2 C 32	Uses dec pt of input range
22	0016	Hi In (Low word)		
23	0017	Hi Rd (Hi word)	2 C 32	Dec pt same as displayed
24	0018	Hi Rd (Low word)		
25	0019	Rd0 (Hi word) (tare for Scale Meter)	2 C 32	Dec pt same as displayed
26	001A	Rd0 (Lo word) (tare for Scale Meter)		
33	0021	Deviation 1 (Hi word) (SP1DIFF for Sc M)	2 C 32	Dec pt same as displayed
34	0022	Deviation 1 (Lo word) (SP1DIFF for Sc M)		
35	0023	Deviation 2 (Hi word) (SP2DIFF for Sc M)	2 C 32	Dec pt same as displayed
36	0024	Deviation 2 (Lo word) (SP2DIFF for Sc M)		
37	0025	Deviation 3 (Hi word) (not for Scale Meter)	2 C 32	Dec pt same as displayed
38	0026	Deviation 3 (Lo word) (not for Scale Meter)		
39	0027	Deviation 4 (Hi word) (not for Scale Meter)	2 C 32	Dec pt same

40	0028	Deviation 4 (Lo word) (not for Scale Meter)		as displayed
41	0029	Analog Lo (Hi word)	2 C 32	Dec pt same as displayed
42	002 A	Analog Lo (Lo word)		Dec pt same as displayed
43	002 B	Analog Hi (Hi word)		
44	002 C	Analog Hi (Lo word)		

* Values are for Base 1 Standard addressing. Add 1 for Base 0 PLC addressing.
** Scale $=.0001 \times$ dec value of (Hi word + Lo word)

Data Type B16

For the following, use any starting Register Address and any number of Registers.

Register Address		Register Name	Bit Significance		
Dec	Hex				
65	0041	Alarm Config 1	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	$\begin{aligned} & 0=\text { AL1 Hi Active } \\ & 0=\text { AL1 Enabled, } \\ & 0=\text { AL2 Hi Active } \\ & 0=\text { AL2 Enabled } \\ & 0=\text { AL1 Non-Latched } \\ & 0=\text { AL2 Non-Latched } \\ & 0=\text { Relay1 Active On } \\ & 0=\text { Relay2 Active On } \end{aligned}$	$\begin{aligned} & \hline 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Latched } \\ & 1=\text { Latched } \\ & 1=0 \mathrm{ff} \\ & 1=0 \mathrm{ff} \end{aligned}$
66	0042	Alarm Config 2	Bits 2 Bit 3 Bit 4 Bit 5	Readings before Alarm $000=1,001=2,010$ $101=32,110=64,$ AL1 $0=$ Deviation AL2 $0=$ Deviation $0=$ Deviation in Menu	$\begin{aligned} & \hline \text { s } 1 \& 2 . \\ & =4,011=8,100=16, \\ & 11=128 \\ & 1=\text { Hysteresis } \\ & 1=\text { Hysteresis } \\ & 1=0 \text { mitted } \end{aligned}$
67	0043	Alarm Config 3 (not applicable to Scale Meter)	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	$\begin{aligned} & 0=\text { AL3 Hi Active } \\ & 0=\text { AL3 Enabled } \\ & 0=\text { AL4 Hi Active } \\ & 0=\text { AL4 Enabled } \\ & 0=\text { AL3 Non-Latched } \\ & 0=\text { AL4 Non-Latched } \\ & 0=\text { Relay3 Active On } \\ & 0=\text { Relay4 Active On } \end{aligned}$	$\begin{aligned} & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Latched } \\ & 1=\text { Latched } \\ & 1=0 \text { ff } \\ & 1=0 \mathrm{ff} \end{aligned}$
68	0044	Alarm Config 4 (not applicable to Scale Meter)	Bits 2 Bit 3 Bit 4 Bit 5	\# Readings before Alarm $000=1,001=2,010$ $101=32 \quad 110=641$ AL3 $0=$ Deviation AL4 $0=$ Deviation $0=$ Deviation in Menu	$\begin{aligned} & \hline \text { m \& } 4 \\ & =4,011=8,100=16, \\ & 1=128 \\ & 1=\text { Hysteresis } \\ & 1=\text { Hysteresis } \\ & 1=0 \text { mitted } \end{aligned}$

69	0045	Input Type	Lo Byte 40-4D T T $50-5 C$ R 4 D D A $50-57$ R A 60-64 D $70-73$ D A0-A2 R $80-84$ R $90-93$ R C0-C4 S D0-D4 L E0-E4 0 B	x value Thermocouple JF, C, KF, KC, NF, NC, EF, EC, TF, TC, SF, SC, RF, RC RTD pre-2009: 4-wire DIN ${ }^{\circ}$, 4-wire DIN $^{\circ} \mathrm{C}$, 4-wire ANSI ${ }^{\circ}$, 4 -wire ${ }^{\circ} \mathrm{C}$, 3 -wire DIN $^{\circ} \mathrm{F}, 3$-wire DIN ${ }^{\circ}$ C, 3 -wire ANSI ${ }^{\circ}$ F, 3 -wire ANSI ${ }^{\circ} \mathrm{C}$, 2 -wire DIN ${ }^{\circ}$, 2-wire DIN $^{\circ} \mathrm{C}$, 2-wire ANSI ${ }^{\circ}$ F, 2-wire ANSI ${ }^{\circ}$ C, Short RTD post-2009: DIN ${ }^{\circ}$, DIN $^{\circ} \mathrm{C}$, ANSI $^{\circ} \mathrm{F}$, ANSI ${ }^{\circ} \mathrm{C}, \mathrm{Ni}^{\circ} \mathrm{F}, \mathrm{Ni}^{\circ} \mathrm{C}, \mathrm{Cu}^{\circ} \mathrm{F}, \mathrm{Cu}^{\circ} \mathrm{C}$, DC $0.2 \mathrm{~V}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 660 \mathrm{~V}$ DC $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 5 \mathrm{~A}$ Ratio $0.2 \mathrm{~V}, 2 \mathrm{~V}, 20 \mathrm{~V}$ RMS $0.2 \mathrm{~V}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 660 \mathrm{~V}$ RMS $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 5 \mathrm{~A}$ Strain 20, 50, 100, 250, 500 mV Load Cell 20, 50, 100, 250, 500 mV Ohms 20, 200, 2000, 20K, 200K
70	0046	Setup (applicable to DPM) $M=$ Meter F = Function D = Display	Bits 3:0 Hex 0 Hex 1 Hex 2 Hex 3 Hex 4 Hex 5 Hex 6 Hex 7 Hex 8 Hex 9 Hex A Hex B Hex C Hex D Bits 5:4 Hex 00 Hex 01 Hex 10 Bit 6 Bit 7	Ctrl In 1 Ctrl In 2 Both Reset M Reset M Hold M Reset F Reset Pk, Vy M Reset M Hold Pk, Vy F Reset M Hold Tare M Reset Pk, Vy Tare FReset Tare M Reset M Reset DP2 DP3 DP5 \quad Neither $=$ DP1 DP3 DP4 DP6 Neither = DP2 F Reset D Blank M Reset M Hold D Blank M Reset Pk, Vy D Blank F Reset Tare D Blank M Reset Valley Peak F Reset Tare T Reset M Reset Scale using Scale, Offset Scale using Coordinates of 2 Points Scale using Reading Coordinates Spare $0=60 \mathrm{~Hz}, 1=50 \mathrm{~Hz}$

70	0046	Setup (applicable to Scale Meter) $\begin{aligned} & \mathrm{M}=\text { Meter } \\ & \mathrm{F}=\text { Function } \\ & \mathrm{D}=\text { Display } \\ & \mathrm{T}=\text { Tare } \end{aligned}$	Bits 3:0 Hex 0 Hex 1 Hex 2 Hex 3 Hex 4 Hex 5 Hex 6 Hex 7 Hex 8 Hex 9 Hex A Hex B Hex C Hex D Hex E Hex F Bit 4 Bit 5 Bit 6 Bit 7	Ctrl In 1 Ctrl In 2 M Reset M Hold F Reset Peak D M Hold Peak D M Hold Tare Peak Tare M Reset Tare F Reset Tare T Reset Tare D Blank Tare M Reset D Blank F Reset D Blank D Item Tare D Item D Blank M Reset D Item F Reset D Item M Hold D Item $0=$ Scale, Offset $0=$ Peak key is Peak $0=60$ Hz $0=$ No dummy zero	Both Reset M Reset M Reset F Reset Tare F Reset M Reset M Reset M Reset M Reset M Reset M Reset Tare F Reset M Reset M Reset M Reset 1 = Coord of 2 Points $1=$ Peak key is Tare $1=50 \mathrm{~Hz}$ 1 = Dummy zero
71	0047	Filter	Bits $3: 0$ Filtering Hex $0=$ Auto Filter, $1=$ Batch $16,2-9=$ Moving Avg, $2=.08 \mathrm{~S}, 3=.15 \mathrm{~S}, 4=.3 \mathrm{~S}, 5=.6 \mathrm{~S}, 6=1.2 \mathrm{~S}$, $7=2.4 \mathrm{~S}, 8=4.8 \mathrm{~S}, 9=9.6 \mathrm{~S}, \mathrm{~A}=$ Unfiltered Bit 4 $0=$ Low Adaptive $1=$ High Adaptive Bit 5 $0=$ Display Batch of 16 $1=$ Display Filtered Bit 6 $0=$ Peak of Unfiltered $\quad 1=$ Peak of Filtered Bit 7 $0=$ Alarm source Unfiltered, $1=$ Filtered		
72	0048	Options	Do Not Use.		
73	0049	Serial Config 1	Bits 3:0 Time between Continuous Serial Outputs Hex $0=.017 \mathrm{~S}, 1=.28 \mathrm{~S}, 2=.57 \mathrm{~S}, 3=1.1 \mathrm{~S}, 4=2.3 \mathrm{~S}$, $5=4.5 \mathrm{~S}, 6=9.1 \mathrm{~S}, 7=18.1 \mathrm{~S}, 8=36.3 \mathrm{~S}, 9=1 \mathrm{M} 13 \mathrm{~S}$, $A=2 \mathrm{M} 25 \mathrm{~S}, \mathrm{~B}=4 \mathrm{M} 50 \mathrm{~S}, \mathrm{C}=9 \mathrm{M} 40 \mathrm{~S}, \mathrm{D}=19 \mathrm{M} 20 \mathrm{~S}$, $\mathrm{E}=38 \mathrm{M} 41 \mathrm{~S}, \mathrm{~F}=77 \mathrm{M} 21 \mathrm{~S}$ Bits 6:4 Baud Rate $\begin{array}{ll} & 000=300,001=600,010=1200,011=2400, \\ & 100=4800,101=9600,110=19200 \\ \text { Bit } 7 \quad 0=\text { Send Unfiltered value, } 1=\text { Send Filtered Val } \end{array}$		

74	004A	Serial Config 2	```Bits 4:0 Meter Serial Address (0-31) [Non-Modbus] Hex \(0=\) Broadcast (\(01=1\) to \(0 \mathrm{~A}=10\)), \(0 F=15,10=16,1 F=31\) Bit \(50=\) Continuous Mode, \(1=\) Command Mode Bit \(6 \quad 0=\) No Alarm data with readings, \(1=\) Alarm data Bit \(7 \quad 0=\) No LF following CR, \(1=\mathrm{LF}\) following CR```
75	004B	Serial Config 3	Bits 2:0 for DPM. Data sent in serial output $0=$ Reading, $1=$ Peak, $2=$ Valley, $3=$ Rdg + Peak, $4=$ Rdg + Valley, 5 = Rdg + Peak + Valley Bits 2:0 for Scale Meter $0=\text { Net }+ \text { Gross }$ 1 = Net only 2 = Gross only 3 = Peak only 4 = Net + Gross + Peak Bit $3 \quad 0=$ Termination chars at end of all items $1=$ " " at end of each item Bit $4 \quad 0=$ Non-latching RTS, $1=$ Latching RTS Bit $5 \quad 0=$ Normal continuous serial transmission 1 = Special Start \& Stop characters Bit $6 \quad 0=$ Full Duplex $\quad 1=$ Half Duplex
76	004C	Serial Config 4	Bits 1:0 $00=$ No Parity $01=0$ Odd Parity $10=$ Even Parity Bits 3:2 $00=$ Custom ASCII $\quad 01=$ Modbus RTU $10=$ Modbus ASCII Bits 5:4 Modbus ASCII Gap Timeout $00=1$ S, $01=3 S, 10=5 S, 11=10 S$
77	004D	Config (applicable to DPM)	Bit 0 $0=$ Linear Curve $1=$ Custom Curve Bit 1 $0=2$-wire RTD Read $1=2$-wire RTD Short Bits 2 $0=$ No Auto-tare $1=$ Auto-tare Bits 4:3 Peak button display response $00=$ Peak $01=$ Valley $10=$ Peak then Vall. $11=$ Tare Bits 7:5 $000=$ Not Rate $001=$ Rate $\times 0.1$, $010=$ Rate $\times 1$ $011=$ Rate $\times 10$, $100=$ Rate $\times 100$ $101=$ Rate $\times 1000$ $110=$ Rate $\times 10000$
77	004D	Config (applicable to Scale Meter)	Bit 1 $0=$ Peak of net value $\quad 1=$ peak of gross value Bit 2 $0=$ Dribble enabled $\quad 1=$ Dribble disabled Bit 3 $0=$ Scale \& offset setup method $1=$ Reading coordinates of 2 points method

78	004E	Lockout 1 (applicable to DPM)	$\begin{array}{\|l\|} \hline \text { Bit } 0 \\ \text { Bit } 2 \end{array}$ $\text { Bit } 4$	0= Enabled, 1 = Locked outOffset, Lo, Hi RdBit 1FilterInput TypeBit 3Scale, Lo In, Hi In
78	004E	Lockout 1 (applicable to Scale Meter)	Bit 0 Bit 2 Bit 4 Bit 6	$0=$ Enabled, $1=$ Locked out Count Bit 1 Setup, Config, DP Input Type Bit 3 Change Display Item\# Tare Bit 5 Offset, Lo Rd, Hi Rd Scale, Lo, Hi In Bit 7 Filter
79	004F	Lockout 2	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6	Serial Comm Config Analog Out Scaling Alarm Setpoint Programming Alarm Config Front Panel Meter Reset Front Panel Function Reset View Setpoints Bit 7 View Peak
81	0051	Setup 1 (not for Scale Meter)	Bits 1:0	$\begin{aligned} & 00=4-1 / 2 \text { Digits, } 0.1 \text { degree } \\ & 01=\text { Slave Remote Display } \\ & 10=4-1 / 2 \text { Dig } / 10,0.01 \text { degree } \\ & 11=3-1 / 2 \text { Digits, } 1 \text { degree } \end{aligned}$
81	0051	Count (applies to Scale Meter)	Bits 3:0 Bits 6:4	$0=$ No auto-zero band $1=1$-count zero band $2=2$-count zero band $3=3$-count zero band Etc. $9=9$-count zero band $0=$ Count by 1 $1=$ Count by 2 $2=$ Count by 5 $3=$ Count by 10 $4=$ Count by 20 $5=$ Count by 50 $6=$ Count by 100
82	0052	Analog Output Setup (applies to DPM)	Bit 0 Bit 1 Bits 2:1	$0=$ Source Unfiltered $1=$ Filtered $0=$ Current Output $1=$ Voltage Output $00=$ Current $(0-20 \mathrm{~mA})$ $10=$ Curr. $(4-20 \mathrm{~mA})$ $01=$ Voltage $(0-10 \mathrm{~V})$ $11=$ Voltage $(\pm 10 \mathrm{~V})$
82	0052	Analog Output Setup (applies to Scale Meter)	Bit 0 Bit 1 Bits 3:2	$0=$ Net Value $1=$ Gross Value $0=$ Filtered $1=$ Unfiltered $00=$ Current $(0-20 \mathrm{~mA})$ $10=$ Curr. $(4-20 \mathrm{~mA})$ $01=$ Voltage $(0-10 \mathrm{~V})$ $11=$ Voltage $(\pm 10 \mathrm{~V})$
87	0057	System Decimal Point	Bits 2:0	$001=$ ddddd. $010=$ dddd.. $011=$ ddd.dd $100=$ dd.ddd $101=$ d.dddd $110=$.ddddd
93	005D	Start Character	Bits 7:0	ASCII Hex Character
94	005E	Stop Character	Bits 7:0	ASCII Hex Character
95	005F	Modbus Addr.	Bits 7:0	Hex value of Decimal Address from 1-255

READ ONLY (FCO3) - Data Type B16

100	0064	Analog Output DAC Type	Bits 7:0	$\begin{aligned} & \hline 0=\text { none, } \\ & 1=1 \text { output, unipolar (12-bit, pre 2009) } \\ & 2=1 \text { output, unipolar (16-bit, pre 2009) } \\ & 3=1 \text { output, uni or bipolar (16-bit, post 2009) } \\ & 4=2 \text { outputs, unipolar (16-bit, post 2009, not } \\ & \text { for Scale Meter) } \end{aligned}$
101	0065	Device Type	Bits 7:0	$01=$ DPM meter $02=$ Scale meter 03 $=$ Counter/timer met. $05=$ DPM transmitter 0 .
102	0066	Revision	Bits 7:0	Hex value of Decimal Revision number
103	0067	Overload Value	Bits 7:0	Hex overload value
104	0068	Signal Conditioner Type	Bits 7:0	$\begin{aligned} & \hline 01=\text { DC, TC/RTD (pre 2009) } \\ & 02=\text { RMS (pre 2009) } \\ & 03=\text { Load Cell } \\ & 22=\text { RMS (post 2009) } \\ & 31=\text { TC (post 2009) } \\ & 41=\text { RTD or Ohms (post 2009) } \end{aligned}$

WRITE ONLY (FC10 dec16) - Data Type 2 C32

105	0069	Display Data (Hi Word)	Hi word of Remote Data to be displayed.
106	$006 A$	Display Data (Lo Word)	Lo word of Remote Data to be displayed.

13. COUNTER / TIMER REGISTER ADDRESSES FC03 \& FC10 (dec16)

Data Types - as shown

Use high word starting Register Addresses and an even number of Registers.

Register Address		Register Name	Data Type	Scaling \& Decimal Point
Dec*	Hex*			
1	0001	Setpoint 1 (Hi word)	2 C 32	Dec point same as displayed.
2	0002	Setpoint 1 (Lo word)	2 C 32	
3	0003	Setpoint 2 (Hi word)	2 C 32	Dec point same as displayed.
4	0004	Setpoint 2 (Lo word)	2 C 32	
5	0005	Setpoint 3 (Hi word)	2 C 32	Dec point same as displayed.
6	0006	Setpoint 3 (Lo word)	2 C 32	
7	0007	Setpoint 4 (Hi word)	2 C 32	Dec point same as displayed.
8	0008	Setpoint 4 (Lo word)	2 C 32	
9	0009	Scale 1Y (Hi word)	M32	Scale $=.00001 \times$ dec value

10	000A	Scale 1Y (Lo word)	M32	of (Hi word + Lo word)**
11	000B	Offset 1 (Hi word)	2 C 32	Dec point same as displayed.
12	000C	Offset 1 (Lo word)	2 C 32	
13	000D	Scale 2Y (Hi word)	M32	Scale $=.00001 \times$ dec value
14	000E	Scale 2Y (Lo word)	M32	of (Hi word + Lo word)**
15	000F	Offset 2 (Hi word)	2 C 32	Dec point same as displayed.
16	0010	Offset 2 (Lo word)	2 C 32	
17	0011	Lo In 1 (Hi word)	2 C 32	Lo In = . $00001 \times$ dec value
18	0012	Lo In 1 (Lo word)	2 C 32	of (Hi word + Lo word)**
19	0013	Lo Rd 1 (Hi word)	2 C 32	Dec point same as displayed.
20	0014	Lo Rd 1 (Lo word)	2 C 32	
21	0015	Hi In 1 (Hi word)	2 C 32	Hi In $=.00001 \times$ dec value
22	0016	Hi In 1 (Lo word)	2 C 32	of (Hi word + Lo word)**
23	0017	Hi Rd 1 (Hi word)	2 C 32	Dec point same as displayed.
24	0018	Hi Rd 1 (Lo word)	2 C 32	
25	0019	Lo In 2 (Hi word)	2 C 32	Lo In = . $00001 \times$ dec value
26	001A	Lo In 2 (Lo word)	2 C 32	of (Hi word + Lo word)**
27	001B	Lo Rd 2 (Hi word)	2 C 32	Dec point same as displayed.
28	001C	Lo Rd 2 (Lo word)	2 C 32	
29	001D	Hi In 2 (Hi word)	2 C 32	Hi In $=.00001 \times$ dec value
30	001E	Hi In 2 (Lo word)	2 C 32	of (Hi word + Lo word)**
31	001F	Hi Rd 2 (Hi word)	2 C 32	Dec point same as displayed.
32	0020	Hi Rd 2 (Lo word)	2 C 32	
33	0021	Deviation 1 (Hi word)	M32	Dec point same as displayed.
34	0022	Deviation 1 (Lo word)	M32	
35	0023	Deviation 2 (Hi word)	M32	Dec point same as displayed.
36	0024	Deviation 2 (Lo word)	M32	
37	0025	Deviation 3 (Hi word)	M32	Dec point same as displayed.
38	0026	Deviation 3 (Lo word)	M32	
39	0027	Deviation 4 (Hi word)	M32	Dec point same as displayed.
40	0028	Deviation 4 Lo word)	M32	
41	0029	Analog Lo 1 (Hi word)	2 C 32	Dec point same as displayed.
42	002A	Analog Lo 1 (Lo word)	2 C 32	
43	002B	Analog Hi 1 (Hi word)	2 C 32	Dec point same as displayed.
44	002C	Analog Hi 1 (Lo word)	2 C 32	
45	002D	Analog Lo 2 (Hi word)	2 C 32	Dec point same as displayed.
46	002E	Analog Lo 2 (Lo word)	2 C 32	
47	002F	Analog Hi 2 (Hi word)	2 C 32	Dec point same as displayed.
48	0030	Analog Hi 2 (Lo word)	2 C 32	

[^0]For the following, use any starting Register Addresses and any number of Registers.

Register Addr		Register Name	Data Type	Scaling \& Decimal Point
Dec	Hex			
49	0031	GateTime	M16	1-19999 (4E1F) Dec Pt =XXX.XX
50	0032	TimeOut	M16	1-19999 (4E1F) Dec Pt =XX. XXX
51	0033	Pulses	M16	1-59999 (4E1F) Dec Pt =XXXXX.
52	0034	Total B (Hi word)	M48	
53	0035	Total B (Mid word)	M48	
54	0036	Total B (Lo word)	M48	
55	0037	Total A (Hi word)	M48	
56	0038	Total A (Mid word)	M48	
57	0039	Total A (Lo word)	M48	
58	003A	Cutoff	M16	0-65535
50	003B	Calibration	M15	SXXX XXXX XXXX XXXX Sign + Magnitude (PPM)

Data Type B16

Register Addr		Register Name	Bit Significance		
Dec	Hex				
65	0041	Alarm Config 1	$\begin{aligned} & \hline \text { Bit 0 } \\ & \text { Bit 1 } \\ & \text { Bit 2 } \\ & \text { Bit 3 } \\ & \text { Bit 4 } \\ & \text { Bit } 5 \\ & \text { Bit } 6 \\ & \text { Bit } 7 \end{aligned}$	$\begin{aligned} & 0=\text { AL1 Hi Active } \\ & 0=\text { AL1 Enabled, } \\ & 0=A L 2 \text { Hi Active } \\ & 0=A L 2 \text { Enabled } \\ & 0=A L 1 \text { Non-Latched } \\ & 0=\text { AL2 Non-Latched } \\ & 0=\text { Relay } 1 \text { Active On } \\ & 0=\text { Relay2 Active On } \end{aligned}$	$\begin{aligned} & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Latched } \\ & 1=\text { Latched } \\ & 1=0 \mathrm{ff} \\ & 1=0 \mathrm{ff} \end{aligned}$
66	0042	Alarm Config 2	Bits 2:0 Bits 4:3 Bit 3 Bit 4 Bit 5	$\begin{aligned} & \text { \# Readings before Alar } \\ & 000=1,001=2,010= \\ & 101=32,110=64,1 \\ & \text { Setpoint Compare Sou } \\ & \text { AL1 } \quad 0=\text { Deviation } \\ & \text { AL2 } \quad 0=\text { Deviation } \end{aligned}$	$\begin{aligned} & \text { ns } 1 \& 2 . \\ & 4,011=8,100=16, \\ & 11=128 \\ & \text { ce } \\ & 1=\text { Hysteresis } \\ & 1=\text { Hysteresis } \\ & 1=\text { Omitted } \end{aligned}$
67	0043	Alarm Config 3	$\begin{aligned} & \text { Bit 0 } \\ & \text { Bit 1 } \\ & \text { Bit } 2 \\ & \text { Bit } 3 \\ & \text { Bit 4 } \\ & \text { Bit } 5 \end{aligned}$	$0=$ AL3 Hi Active $0=$ AL3 Enabled $0=$ AL4 Hi Active $0=A L 4$ Enabled $0=$ AL3 Non-Latched $0=$ AL4 Non-Latched	$\begin{aligned} & 1 \text { = Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Lo Active } \\ & 1=\text { Disabled } \\ & 1=\text { Latched } \\ & 1=\text { Latched } \end{aligned}$

			$\begin{aligned} & \hline \text { Bit 6 } \\ & \text { Bit 7 } \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 0=\text { Relay3 Active On } & 1=0 \mathrm{ff} \\ 0=\text { Relay4 Active On } & 1=0 \mathrm{ff} \end{array}$		
68	0044	Alarm Config 4	Bits $2: 0=$ $\#$ Readings before Alarms $3 \& 4$. $000=1,001=2,010=4,011=8,100=16$, $101=32 \quad 110=64 \quad 111=128$ Bit 3 AL3 $\quad 0=$ Deviation $\quad 1=$ Hysteresis Bit 4 AL4 $\quad 0=$ Deviation $\quad 1=$ Hysteresis Bit 5 $0=$ Deviation in Menu $\quad 1=$ Omitted			
69	$\begin{aligned} & \hline 0045 \\ & \text { Input } \\ & \text { Type } \end{aligned}$	Rate	00-0F	$\begin{aligned} & 00=A \& B, 01=A 0 n l y, 02=\text { Batch, } \\ & 03=A _ \text {Atot, } 05=A _B t o t, 0 B=A+B, \\ & 0 C=A-B, 0 D=A * B, 0 E=A / B, O F=A / B-1 \end{aligned}$		
		Period	10-1E	$\begin{aligned} & 10=A \& B, 11=A 0 \text { nly } \\ & 1 B=A+B, 1 C=A-B, 1 D=A * B, 1 E=A / B \end{aligned}$		
		Total	20-2E	$\begin{aligned} & 20=\text { Total A\&B, } 21=\text { AOnly } \\ & 24=A-B _u d, 26=\text { Burst }=26,27=B _ \text {Arat, } \\ & 29=A _B u d, 2 A=A _B i n h, 2 B=A+B, 2 C=A-B, \\ & 2 D=A * B, 2 E=A / B \end{aligned}$		
		Time Interval	41-42	$\begin{aligned} & 41=\text { Time Interval A to B } \\ & 42=1 /(A \text { to } B) \end{aligned}$		
		Stopwatch	50-53	$\begin{aligned} & 50=A \text { to } A, \\ & 51=A \text { to } B \\ & 52=1 /(\text { to } A) \\ & 53=1 /(A \text { to } B) \end{aligned}$		
		Phase	61-62	$\begin{aligned} & 61=0-360 \\ & 62=-180 \text { to }+180 \end{aligned}$		
		Duty Cycle	71	A to B		
		V-to-F Signal Conditioner	XY	$\begin{aligned} & X=8,4-20 \mathrm{~mA} \text { input } \\ & X=9,0-1 \mathrm{~mA} \text { input } \\ & X=A, 0-10 \mathrm{~V} \text { input } \\ & Y=1, A \text { only } \\ & Y=2, \text { Batch } \\ & Y=3, A \text { to } A \text { total } \\ & Y=F, 1 / \mathrm{A} \end{aligned}$		
		Quadrature	C0-C1	$\begin{aligned} & \hline \mathrm{CO}=\text { Total } \\ & \mathrm{C} 1=\text { Rate } \\ & \hline \end{aligned}$		
70	0046	Setup $\mathrm{M}=$ Meter F = Function D = Display	Bits 3:0 Hex 0 Hex 1 Hex 2 Hex 3 Hex 4	Ctrl $\ln 1$ Meter Reset Meter Reset Meter Reset Meter Reset Function Reset	Ctrl In 2 Function Reset Meter Hold Peak or Valley External Gate Meter Hold	Both Reset MReset MReset MReset MReset MReset

			Hex 5 Hex 6 Hex 7 Hex 8 Hex 9 Hex A Hex B Hex C Hex D Hex E Hex F Hex F Bit 4 Bit 5 Bit 6 Bit 7	Valley Function Reset Meter Hold Reset Total A Force Alarm1 Meter Reset Function Reset Meter Hold Peak or Valley Display Blank Item2 Tare Enable 0 = Scale2 usin 1 = Scale2 usin 0 = Scale1 usin 1 = Scale1 usin 0 = Blank leadi 1 = Display lea $0=$ Zero Total 1 = Restore To	Peak External Gate Peak or Valley Reset Total B Force Alarm2 Display Blank Display Blank Display Blank Display Blank External Gate Item3 Item Tare (Remote Scale, Offset Coordinates o Scale, Offset Coordinates o g zeros ing zeros pon Power-On al upon Power-	FRest MReset FReset FReset No Action MReset MReset MReset FReset MReset = Neither/Both splay Only) Points Points
71	0047	Filter	Bits 2:0 Bit 3 Bit 4 Bit 5 Bit 6	$\begin{aligned} & 1=.1 \mathrm{~S}, 2=.2 \\ & 6=3.2 \mathrm{~S}, 7=6.4 \\ & 0=\text { Low Adapti } \\ & 0=\text { Display Unf } \\ & 0=\text { Peak, Valley } \\ & 1=\text { Peak,Valley } \\ & 0=\text { Adaptive Fil } \\ & 1=\text { Convention } \end{aligned}$	$\begin{aligned} & \text { S } 3=.4 \mathrm{~S}, 4=.8 \mathrm{~S} \\ & \text { ve, } 1=\text { High Ada } \\ & \text { iltered, } 1=\text { Displa } \\ & \text { of Unfiltered } \\ & \text { of Filtered } \\ & \text { ter } \\ & \text { al Filter } \end{aligned}$	$\overline{s=1.6 S},$ ve Filtered
72	0048	Options	Do Not Use.			
73	0049	Serial Config 1	Bits 3:0 Time between Continuous Serial Outputs Hex $0=.017 \mathrm{~S}, 1=.28 \mathrm{~S}, 2=.57 \mathrm{~S}, 3=1.1 S, 4=2.3 \mathrm{~S}$, $5=4.5 \mathrm{~S}, 6=9.1 \mathrm{~S}, 7=18.1 \mathrm{~S}, 8=36.3 S, 9=1 \mathrm{M} 13 \mathrm{~S}$, A=2M25S, $=4 \mathrm{M} 50 \mathrm{~S}, \mathrm{C}=9 \mathrm{M} 40 \mathrm{~S}, \mathrm{D}=19 \mathrm{M} 20 \mathrm{~S}$, $\mathrm{E}=38 \mathrm{M} 41 \mathrm{~S}, \mathrm{~F}=77 \mathrm{M} 21 \mathrm{~S}$ Bits 6:4 Baud Rate $000=300,001=600,010=1200,011=2400$, $100=4800,101=9600,110=19200$ Bit 7 $0=$ Send Unfiltered value, $1=$ Send Filtered Val	Time between Continuous Serial Outputs Hex $0=.017 \mathrm{~S}, 1=.28 \mathrm{~S}, 2=.57 \mathrm{~S}, 3=1.1 \mathrm{~S}, 4=2.3 \mathrm{~S}$, $5=4.5 \mathrm{~S}, 6=9.1 \mathrm{~S}, 7=18.1 \mathrm{~S}, 8=36.3 \mathrm{~S}, 9=1 \mathrm{M} 13 \mathrm{~S}$, $A=2 \mathrm{M} 25 \mathrm{~S}, \mathrm{~B}=4 \mathrm{M} 50 \mathrm{~S}, \mathrm{C}=9 \mathrm{M} 40 \mathrm{~S}, \mathrm{D}=19 \mathrm{M} 20 \mathrm{~S}$, $\mathrm{E}=38 \mathrm{M} 41 \mathrm{~S}, \mathrm{~F}=77 \mathrm{M} 21 \mathrm{~S}$ Baud Rate $\begin{aligned} & 000=300,001=600,010=1200,011=2400, \\ & 100=4800,101=9600,110=19200 \\ & 0=\text { Send Unfiltered value, } 1=\text { Send Filtered Val } \end{aligned}$		

74	004A	Serial Config 2	$\begin{array}{\|l} \hline \text { Bits 4: } \\ \text { Bit } 5 \\ \text { Bit } 6 \\ \text { Bit } 7 \end{array}$	Meter Serial Address (0-31) [Non-Modbus] Hex $0=\operatorname{Broadcast}(01=1$ to $0 \mathrm{~A}=10)$, $0 F=15,10=16,1 F=31$ $0=$ Continuous Mode, $1=$ Command Mode $0=$ No Alarm data w/ readings, $1=$ Alarm data $0=$ No LF following CR, $1=$ LF following CR
75	004B	Serial Config 3	Bits $2:$ Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	Data sent in serial output $0=$ All active Items, $1=$ Item1, $2=$ Item2, 3 = Item3, 4 = Peak, $5=$ All active Items + Peak, $6=$ Valley, $7=$ All active Items + Peak + Valley $0=$ Termination chars at end of all items $1=$ Termination chars at end of each item $0=$ Non-latching RTS 1 = Latching RTS $0=$ * is Recognition Character 1 = Custom Recognition Character $0=$ No Serial Start / Stop Characters 1 = Start / Stop Characters $0=$ Full Duplex, 1 = Half Duplex
76	004C	Serial Config 4	Bits $1:$ Bits 3 Bits 5	$00=$ No Parity 01 = Odd Parity 11 = Even Parity $00=$ Custom ASCII 01 = Modbus RTU, 10 = Modbus ASCII Modbus ASCII Gap Timeout $00=1 \mathrm{~S}, 01=3 \mathrm{~S}, 10=5 \mathrm{~S}, 11=10 \mathrm{~S}$
77	004D	Config	Bit 0 Bit 1 Bits $3:$ Bits 7:	$\begin{aligned} & 0=\text { VF Batch, Atot zero cutoff } \\ & 1 \text { = Allow negative values } \\ & 0=\text { Calculate Rate value } \\ & 1 \text { = Calculate Square Root of Rate } \\ & 00=\text { Basic Counter, } 01 \text { = Extended Counter } \\ & 10=\text { Custom Curve \#1 } \\ & 11=\text { Custom Curve \#2 (if V-to-F) } \\ & 0=\text { Exponential Overload } \\ & 1=999999 \text { Overload } \\ & 2=\text { One Right Hand Dummy Zero } \\ & 3=\text { Two Right Hand Dummy Zeros } \\ & 4=\text { Clock Time in Seconds } \\ & 5 \text { = Clock Time in HH.MM.SS Format } \\ & 6=\text { Remote Display, HKL Command } \\ & \hline \end{aligned}$


				```7 = Remote Display, Value \(8=1\) st Value in String \(9=2\) nd Value in String \(A=3\) rd Value in String \(B=4^{\text {th }}\) Value in String C = Remote Display using Start, Stop, Skip, Show Characters```
78	004E	Lockout 1	  Bit 0 F   Bit 1 G   Bit 2 S   Bit 3 Inp   Bit 4 S   Bit 5 Alp   Bit 6 S   Bit 7 S	0 = Enabled, 1 = Locked out   Filter   Gate Time, Timeout, Batch, Preset, Pulses, Cutoff   Setup, Config, Display Number   Input Type   Setpoint Programming   Alarm Config, Deviation / Hysteresis   Scale, Offset, Resolution, 2 Coordinates   Slope, Decimal Points
79	004F	Lockout 2	0   Bit 0 C   Bit 1 C   Bit 2 S   Bit 3 A   Bit 4 F   Bit 5 F   Bit 6 V   Bit 7 V   Bra	$0 \text { = Enabled, } 1 \text { = Locked out }$   Change Item\# displayed   Calibration   Serial Comm Config   Analog Out Scaling \& Setup   Front Panel Meter Reset   Front Panel Function Reset   View Setpoints   View Peak
80	50	Batch Operation	Bit 0 0    1   Bit 1 0    1   Bit 2 0    1   Bit 3 0    1   Bits $5: 4$ R    0    1    3	$\begin{aligned} & 0=\text { Display "rEADy" after Reset } \\ & 1=\text { Start } \\ & 0=\text { Item2 is Grand Total } \\ & 1=\text { Item2 is Total Number of Batches } \\ & 0=\text { Gate Time resets } \\ & 1=\text { Control Input } 2 \text { resets } \\ & 0=\text { Reset to Zero, Count Up } \\ & 1 \text { = Reset to SETPT1, Count Down } \\ & \text { Residual Input } \\ & 0,2=\text { Input Discard, Grand Total Discard } \\ & 1=\text { Input Accept, Grand Total Discard } \\ & 3=\text { Input Accept, Grand Total Accept } \end{aligned}$


81	0051	Alarm Source	Bits 1:   Bits $3:$   Bits 5:   Bits 7:	Setpoint 2   Setpoint 1   Setpoint 4   Setpoint 3   For each Setpoint: $00=$ Filtered Item, $01=\text { Item1, } 10=\text { Item2, } 11=\text { Item3 }$
82	0052	Analog Out Setup	$\begin{array}{\|l\|} \hline \text { Bits1:0 } \\ \text { Bit 2 } \\ \hline \end{array}$	$\begin{aligned} & 0=\text { Filtered Item, } 1=\text { Item1, } 2=\text { Item2, } 3=\text { Item3 } \\ & 0=\text { Current Output, } 1=\text { Voltage Output } \end{aligned}$
83	0053	Scale Multiplier	Bits $3:$ Bits 7:	Scale1 Multiplier Scale2 Multiplier $\begin{aligned} & 0=.00001,1=.0001,2=.001,3=.01, \\ & 4=.1,5=1,6=10,7=100,8=1000, \\ & 9=10000, A=100000 \end{aligned}$
84	0054	Trigger Slope	$\begin{array}{\|l\|} \hline \text { Bit } 0 \\ \text { Bit } 1 \end{array}$	0 = Positive Slope, B Input   1 = Negative Slope, B Input   0 = Positive Slope, A Input   1 = Negative Slope, A Input
85	0055	Display Item	$\begin{array}{\|l} \hline \text { Bits 1: } \\ \text { Bits 3: } \end{array}$	1 = Item1, 2 = Item2, 3 =Item3 Display Response to Peak Button: $00=$ Peak, $01=$ Valley, $10=$ Peak then Valley
86	0056	Resolution	Bits 3:	$\begin{aligned} & 0=.00001,1=.0001,2=.001,3=.01, \\ & 4=.1,5=1,6=10,7=100,8=1000, \\ & 9=10000, A=100000 \end{aligned}$
87	0057	System   Decimal   Point	Bits 3 Bits 7:	DecPt1   DecPt2   1 = dddddd., 2 = ddddd.d, 3 = dddd.dd,   4 = ddd.ddd, $5=$ dd.dddd, $6=$ d.ddddd

## Special Characters

88	0058	Recognition	Bits 7:0 ASCII Hex Character	
89	0059	Remote Start	Bits 7:0 ASCII Hex Character	
90	005 A	Remote Stop	Bits 7:0 ASCII Hex Character	
91	005 B	Remote Skip	Bits 7:0 ASCII Hex Character	
92	005 C	Remote Show	Bits 7:0 ASCII Hex Character	
93	005 D	Serial Transm. Start	Bits 7:0 ASCII Hex Character	
94	005 E	Serial Transm. Stop	Bits 7:0 ASCII Hex Character	
95	005 F	Modbus Address	Bits 7:0 Hex Value of Decimal Address 1-255	
96	60	Reserved		
97	61	Reserved	Do not use	

## READ ONLY (FCO3) - Data Type B16

100	0064	Analog Output  	
			$0=$ none,   $1=1$ output, unipolar (12-bit, pre 2009)   $2=1$ output, unipolar (16-bit, pre 2009)   $3=1$ output, uni or bipolar (16-bit, post 2009)   $4=2$ outputs, unipolar (16-bit, post 2009)
101	0065	Device Type	Bits 7:0 01 = DPM meter  
			$03=$ Counter/Timer meter   $05=$ DPM transmitter   $07=$ Counter/Timer transmitter
102	0066	Revision	Bits 7:0 Hex value of Decimal Revision number

WRITE ONLY FC10 (dec16) - Data Type 2 C32

105	0069	Display Data	Hi Word Displayed
106	$006 A$	Display Data	Lo Word Displayed
107	$006 B$	Data to Item3	Hi Word Applied to Item3
108	006 C	Data to Item3	Lo Word Applied to Item3
109	006 D	Data to Both	Hi Word Displayed and Applied to Item3
110	006 E	Data to Both	Lo Word Displayed and Applied to Item3

## WRITE ONLY FC10 (dec16) - Data Type B16

111	O06F	Force Alarms, Remote   Display Mode	Bit 0 = Alarm 1   Bit 1 = Alarm 2   Bit 2 = Alarm 3   Bit 3 = Alarm 4

Please see the description at the end of Section 10 for comparing the Remote Data to the Relay Setpoints or using it as the source for setting the Analog Output.

## 25. WARRANTY

Yokogawa Corporation of America warrants its products against defects in materials or workmanship for a period of one year from the date of purchase.

In the event of a defect during the warranty period, the unit should be returned, freight prepaid (and all duties and taxes) by the Buyer, to the authorized Yokogawa distributor where the unit was purchased. The distributor, at its option, will repair or replace the defective unit. The unit will be returned to the buyer with freight charges prepaid by the distributor.

## LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from:

1. Improper or inadequate maintenance by Buyer.
2. Unauthorized modification or misuse.
3. Operation outside the environmental specifications of the product.
4. Mishandling or abuse.

The warranty set forth above is exclusive and no other warranty, whether written or oral, is expressed or implied. Yokogawa specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

## EXCLUSIVE REMEDIES

The remedies provided herein are Buyer's sole and exclusive remedies. In no event shall Yokogawa be liable for direct, indirect, incidental or consequential damages (including loss of profits) whether based on contract, tort, or any other legal theory.


[^0]:    * Values are for Base 1 Standard addressing. Add 1 for Base 0 PLC addressing.
    ** Max Value = 21,474.1

