Modbus Protocol COMMUNICATIONS MANUAL 800Plus

Universal Digital Panel Meters, Counters, Timers and Transmitters, Series 2

Now with Ethernet

2 Dart Rd, Newnan, GA 30265, USA Phone: 770-251-8700, Fax: 770-251-2088 http://www.yca.com

1. TABLE OF CONTENTS

1.	TABLE	ABLE OF CONTENTS 2				
2.	INTRO	INTRODUCTION, MODBUS PROTOCOL				
3.	MODB	US CONNECTION EXAMPLES	4			
4.	JUMPI	ER SETTINGS & FIELD WIRING	5			
5.	PROG	RAMMING YOUR MODBUS DEVICE	9			
6.	MODB	US PROTOCOL IMPLEMENTATION	10			
	1.	General	10			
	2.	Framing	10			
	3.	Electrical Interface	11			
	4.	Parameters Selectable via Instrument Setup (IS) Software	11			
	5.	Parameters Selectable via Front Panel Meter Setup	11			
	6.	Supported Function Codes	11			
	7.	Register Numbers vs. Meter Addresses				
	8.	Supported Exception Response Codes				
	9.	Message Formatting	14			
	10.	Message Examples for Device Address= 01, No Parity	15			
	11.	Data Types Internal Registers	16			
	12.	DPM & Analog Input Transmitter Internal Register Addresses	17			
	13.	Counter / Timer Internal Register Addresses	23			
7.	WARR	ANTY	32			

2. INTRODUCTION, MODBUS PROTOCOL

The Modbus Protocol is an industry-standard communications protocol that is selectable with all our serial communications signal options: Ethernet, USB, RS485 and RS232. It is implemented by the microcomputer on the main board and is compliant with Modbus RTU or ASCII transmission modes (software selectable), as specified in Modbus over Serial Line Specification V1.0 (2002).

Digital panel meters, counters and timers require a plug-in option board for Modbus communications. This board can be any of the following:

- RS232 board
- RS485 board with dual RJ11 jacks.
- RS485 Modbus board with dual RJ45 jacks
- USB board
- USB-to-RS485 converter board
- Ethernet board
- Ethernet-to-RS485 converter board

Our RS485 and Modbus RS485 boards are both Modbus compliant, but the RS485 board uses RJ11 jacks while the Modbus board uses RJ45 jacks as recommended in the Modbus Specification. With either board, the two jacks are wired in parallel to allow daisy chaining of meters with no need for a hub.

Our USB-to-RS485 and Ethernet-to-RS485 converter boards allow the host meter to function as a normal meter, be connected to a host computer or Ethernet local area network (LAN), and also act as the device server for an RS485 network with up to 31 other meters equipped with an RS485 board. These meters can then be daisy-chained using readily available, straight-through 6-wire data cables (not 4-wire telephone cables or crossover cables). Use repeaters to increase the number of addressable meters.

Our DIN-rail transmitters come with a user-selectable Ethernet or RS232/RS485 I/O port in addition to a scalable 4-20 mA output, which is standard.

Our DIN-rail Ethernet-to-RS485 device server provides an RJ45 jack for connection to the Ethernet, an RJ11 jack to support an RS485 network of meters, plus screw terminals to support an RS485 network of DIN-rail transmitters via a set of 3 or 5 parallel wires (half- or full-duplex).

The Modbus TCP protocol is seamlessly converted by our Ethernet Nodes to Modbus RTU or Modbus ASCII for communication with meters and transmitters on an RS485 bus. Please see our Ethernet Manual for more information.

The Custom ASCII Protocol is a software-selectable alternative to the Modbus Protocol. It also allows device addressing of up to 31 devices. It is less complex than the Modbus protocol, but is limited to use with our devices. Please see our Custom ASCII Protocol Communications Manual.

3. MODBUS CONNECTION EXAMPLESS

Host computer

4. JUMPER SETTINGS & FIELD WIRING

1. SAFETY WARNINGS

Digital panel meters, counters, timers and transmitters may be powered with AC (mains) from 85-264 Vac or 95-300 Vdc with standard high voltage power, or 12-34V ac or 10-48 Vdc with the low voltage power supply option. To avoid the possibility of electrical shock or damaging short circuits, always unplug the device before opening the case. Please refer to the respective device manuals for full safety information and instruction on how to open the case. Signal wiring changes external to the case can be made safely while the units are under power.

2. JUMPERS ON SERIAL METER BOARDS

RS485 Board, Full Duplex Operation

b & d - Installed on last meter in long cable run.

RS485 Board, Half Duplex Operation

- **a & c** Installed for half duplex operation.
- **d** Installed on last meter in line with long cable runs.

Note: Board is shipped with no jumpers installed.

Ethernet-to-RS485 Converter Board & USB-to-RS485 Converter Board

Full Duplex Operation

No jumpers for short cable runs. Add **b & d** for long cable runs.

Half Duplex Operation

- **a & c** for short cable runs.
- **d** Installed on last meter in line with long cable runs.

3. CONNECTOR WIRING, SERIAL BOARD TO COMPUTER

massbscssds

RS-485

RJ11

RJ11

RS232 INTERFACE

Computer

RS485 INTERFACE - FULL DUPLEX

RS485-MODBUS - FULL DUPLEX

4. TRANSMITTER CONNECTOR WIRING

RS485 INTERFACE - HALF DUPLEX

RS485-MODBUS - HALF DUPLEX

- The termination resistor jumper settings should only be selected if the transmitter is the last device on an RS485 line longer than 200 feet (60 m).
- ** Or jumper external BTX to BRX and ATX to ARX (same effect as internal jumpers).

Serial Signal	Duplex	Jumpers	Termination Resistor*
RS485	Full	None	E6 a = Transmit E6 c = Receive
	Half	E6 b + d**	E6 c
RS232	Full	None	None

Serial Signal	Duplex	Jumpers	Termination Resistor*
RS485	Full	None	E6 a = Transmit E6 c = Receive
	Half	E6 b + d**	E6 c
RS232	Full	None	None

* The termination resistor jumper settings should only be selected if the transmitter is the last device on an RS485 line longer than 200 feet (60 m).

** Attempting to draw more than the rated current will shut down the output.

To reset communications to 9600 baud, command mode, Custom ASCII protocol, and Address 1, place a jumper at E1 and power up the transmitter.

Analog Output	Jumpers
Current	E2 a + d
Voltage	E2 b + c

Excitation Output*	Jumpers
5V, 100 mA	E3 a + c; E4 a
10V, 120 mA	E3 a + c; E4 b
24V, 50 mA	E3 b, E4 none

5. PROGRAMMING YOUR MODBUS DEVICE

OVERVIEW

Modbus digital panel meters, counters, timers and transmitters are easily programmed via their serial port using Windows-based **Instrument Setup (IS)** software, which provides a graphical user interface and is available at no charge. This software allows uploading, editing, downloading and saving of setup data, execution of commands under computer control, listing, plotting and graphing of data, and computer prompted calibration. Digital panel meters, counters and timers can also be programmed via their 4-key front panel as explained in their respective manuals; however, online programming is easier. For Ethernet, please see our separate **Ethernet Manual**.

GETTING STARTED WITH INSTRUMENT SETUP SOFTWARE

To install IS software, download the file *instrument.exe* from our website, double-click on the file name to extract three files, double-click *on setup.exe*, and follow the prompts. To launch IS software, press *Start* => *Programs* => *IS2* => *IS2*. Establish communications by selecting matching settings between the instrument and PC, and click on *Establish*. Once communications have been established, click on *Main Menu*.

The best way to learn IS software is to experiment with it. From the Main Menu, click on *Get Setup* to retrieve (or get) the existing setup data from your device. Click on *View* = > *Setup* to bring up screens which allow you to edit the setup file using pull-down menus and other selection tools. You can save your file to disk by clicking on *File* = > *Save Setup*. You can download (or put) your edited file into the device by clicking on *Put Setup*. Programmable items will only be displayed if the appropriate hardware has been detected, such as the dual relay option for meters. Pressing the *F1* key at any time will bring up detailed help information.

An analog output is defined in two steps. The input to the device is first scaled to a digital reading in engineering units, and this reading is then scaled to the analog output. The digital reading is also used for setpoint control and can be transmitted as serial data.

ADDITIONAL FEATURES

- **The Commands pull-down menu** allows you to execute certain functions by using your computer mouse. The *Commands* pull-down menu will be grayed out unless a *Get Setup* has been executed.
- The Readings pull-down menu provides three formats to display input data on your PC monitor. In all formats, use the *Pause* and *Continue* buttons to control the timing of data collection, then press *Print* for a hardcopy on your PC printer. List presents the latest digital readings in a 20-row by 10-column table. Plot generates a plot of digital readings vs. time in seconds, like an oscilloscope. Graph generates a histogram, where the horizontal axis is the reading and the vertical axis is the number of readings.

6. MODBUS PROTOCOL IMPLEMENTATION

1. GENERAL

The Modbus capability conforms to the Modbus over Serial Line Specification & Implementation guide, V1.0. Both the Modbus RTU and Modbus ASCII protocols are implemented:

Modbus RTU

Baud Rate	
Data Format	1 start bit, 8 data bits, 1 parity bit, 1 stop bit (11 bits total)
	None, Odd, Even (if None, then 2 Stop bits for 11 total)
Address	0 for broadcast, 1-247 for individual meters

Modbus ASCII

Baud Rate	
Data Format	. 1 Start bit, 7 Data bits, 1 Parity bit, 1 Stop bit (10 bits total)
Parity	None, Odd, Even (if None, then 2 Stop bits for 10 total)
-	0 for broadcast, 1-247 for individual meters

2. FRAMING

Modbus RTU

Message frames are separated by a silent interval of at least 3.5 character times. If a silent interval of more than 1.5 character times occurs between two characters of the message frame, the message frame is considered incomplete and is discarded. Frame Check = 16 bit CRC of the complete message excluding CRC characters.

Modbus ASCII

The message begins immediately following a colon (:) and ends just before a Carriage Return/ Line Feed (CRLF). All message characters are hexadecimal 0-9, A-F (ASCII coded). The system allowable time interval between characters may be set to 1, 3, 5 or 10 seconds. Frame Check = 1 byte (2 hexadecimal characters) LRC of the message excluding the initial colon (:) and trailing LRC and CRLF characters.

3. ELECTRICAL INTERFACE

Four-wire (plus common) full-duplex or two-wire (plus common) half-duplex RS485 signal levels are jumper selectable for digital panel meters, counters and timers. A polarization resistor and termination resistor are also jumper selectable. In case of a long line (greater then 500 ft) to the first device, a termination resistor should be selected for the first device. In case of a long line length (greater then 500 ft) between the first and last devices, a termination resistor should be selected for the first devices of the first and last devices. Never add termination resistors to more than two devices on the same line. A two-wire, half-duplex RS485 signal level is jumper selectable for transmitters.

4. PARAMETERS SELECTABLE VIA INSTRUMENT SETUP (IS) SOFTWARE

Serial Protocol	Custom ASCII, Modbus RTU, Modbus ASCII
Modbus ASCII Ga	ap Timeout 1 sec, 3 sec, 5 sec, 10 sec
Baud Rate	
Parity	No parity, 2 stop bits; odd parity, 1 stop bit; even parity, 1 stop bit
Device Address .	0 to 247

5. PARAMETERS SELECTABLE VIA FRONT PANEL METER SETUP

The two menu items related specifically to Modbus setup are SEr_4 and Addr.

SEr_4	0 00	0 1 Sec 2 5 Sec
Serial Comm 4	Modbus ASCII Gap Timeout	1 3 Sec 3 10 Sec
	000	0 Customl ASCII (Non-Modbus)
	Serial Protocol	1 Modbus RTU
		2 Modbus ASCII
	00 0	0 No Parity, 2 or more stop bits
	Parity	1 Odd Parity, 1 or more stop bits
		2 Even Parity, 1 or more stop bits
Addr	000 Meter Address	Set to desired address 1-247

The baud rate is set in SEr_1 per the Meter manual. The selection of Modbus RTU or Modbus ASCII in SEr_4 above overrides any LF or Command Mode selections that have been made, since they are determined by the Modbus protocol.

6. SUPPORTED FUNCTION CODES

FC03: Read Holding Registers. Reads internal registers containing setup parameters (Scale, Offset, Setpoints, etc.)

FC04: Read Input Registers. Reads measurement values and alarm status

FC05: Write Single Coil. Action command to device

FC08: Diagnostics. Checks communications between Master and Slave.

FC10: Write Multiple Registers (FC10 = 16 dec). Writes internal registers containing setup parameters (Scale, Offset, Setpoints, etc.)

7. REGISTER NUMBERS VS. METER ADDRESSES

Some Master devices (e.g., Modicon) require that the desired Register Number and not the Register Address be entered. The Register Number is 1 higher than the Register Address. For entry to these devices, add 1 to the Register Address shown in the tables below. The Register Address shown will then be output from these devices.

FC04: Read Input Registers

Reads measurement values and alarm status. Returns values in M31 or 2C32 format without decimal point (see Sec 11, p 16). The displayed system decimal point can be read with FC03 at addr 0057. Use only **high word** Starting Register Addresses and an **even** number of Registers.

Register	Address	Meter or Analog Input	Counter, Timer, or Pulse Input	
Base 1 Std addr.	Base O PLC addr.	Transmitter Response (M31 format)	Transmitter Response (2C32 format)	
00 01	00 02	Hi word of Alarm status	Hi word of Alarm status	
00 02	00 03	Lo word of Alarm status	Lo word of Alarm status	
00 03	00 04	Hi word of Measurement value *	Hi word of Item 1 value	
00 04	00 05	Lo word of Measurement value *	Lo word of Item 1 value	
00 05	00 06	Hi word of Peak value	Hi word of Peak value	
00 06	00 07	Lo word of Peak value	Lo word of Peak value	
00 07	00 08	Hi word of Valley value **	Hi word of Valley value	
00 08	00 09	Lo word of Valley value **	Lo word of Valley value	
00 09	00 0A	N/A	Hi word of Item 2 value	
00 0A	00 0B	N/A	Lo word of Item 2 value	
00 OB	00 OC	N/A	Hi word of Item 3 value	
00 OC	00 OD	N/A	Lo word of Item 3 value	

* Net value for Scale Meter. ** Gross value for Scale Meter.

FC05: Write Single Coil: Action command to device

Output Address		Output	Action Command
Base 1	Base O	Value	
00 01	00 02	FF 00	Device Reset (No Response)
00 02	00 03	FF 00	Function Reset (Peak, Valley, latched alarms)
00 03	00 04	FF 00	Latched Alarm Reset (only)
00 04	00 05	FF 00	Peak Reset
00 05	00 06	FF 00	Valley Reset
00 06	00 07	FF 00	Remote Display Reset (Counters in Remote Display Mode)
00 07	00 08	FF 00	Display Item 1 (Meters, Counters, Timers)
00 08	00 09	FF 00	Display Item 2 (Counters, Timers)
00 09	A0 00	FF 00	Display Item 3 (Counters, Timers)
00 0A	00 OB	FF 00	Display Peak (Meters, Counters, Timers)
00 OB	00 0C	FF 00	Display Valley (Meters except Weight, Counters, Timers)
00 0D	00 0E	FF 00	Meter Hold (output value = 00 00 resets Meter Hold)
00 0E	00 OF	FF 00	Blank Display (output value = 00 00 resets Display Blank)
00 OF	00 10	FF 00	Activate External Input A (output value = 00 00 deactivates)
00 10	00 11	FF 00	Activate External Input B (output value = 00 00 deactivates)

FC08: Diagnostics

Checks communications between the Master and Slave, and returns the count in the Modbus Slave counters (which are reset when the meter is reset).

Hex Sub Function Code	Data Sent	Response Data	Description
00 00	Any	Same	Returns Query Data (N x 2 bytes). Echo Request.
00 01	FF 00 00 00	FF 00 00 00	 Restarts Communications. If in the Listen-Only mode, no response occurs. Takes Slave out of the Listen-Only mode and one of the following: Clears communications event counters. Does not clear communications event counters.
00 04	00 00	None	Forces Listen-Only. All addressed and broadcast Messages are monitored and counters are incre- mented, but no action is taken or response sent. Only Sub-Function 00 01 causes removal of this Listen- Only state.
00 0A	00 00	00 00	Clears all Modbus slave counters.
00 0B	00 00	Total Message Count	Returns total number of messages detected on the bus, including those not addressed to this Slave. Excludes bad LRC/CRC, parity error or length < 3.
00 0C	00 00	Checksum Error Count	Returns total number of messages with bad LRC/ CRC, parity or length < 3 errors detected on the bus including those not addressed to the Slave.
00 0D	00 00	Exception Error Count	Returns total number of Exception responses returned by the Addressed Slave or that would have been returned if not a broadcast message or if the Slave was not in a Listen-Only mode.
00 0E	00 00	Slave Message Count	Returns total number of messages, either broadcast or addressed to the Slave. Excludes bad LRC/CRC, parity or length < 3 errors.
00 OF	00 00	No Response Count	Returns total number of messages, either broadcast or addressed to the Slave, for which Slave has returned No Response, neither a normal response nor an exception response. Excludes bad LRC/CRC, parity or length < 3 errors.
00 11	00 00	Slave Busy	Returns total number of Exception Code 6 (Slave Busy) responses.

8. SUPPORTED EXCEPTION RESPONSE CODES

Code	Name	Error Description
01	Illegal Function	Illegal Function Code for this Slave. Only hex Function Codes 03, 04, 05, 08, 10 (dec 16) are allowed.
02	Illegal Data Address	Illegal Register Address for this Slave and/or Register Length.
03	Illegal Data Value	Illegal data value or data length for the Modbus protocol.
04	Slave Device Failure	Slave device failure (eg. Device set for external gate).

9. MESSAGE FORMATTING

MA = Meter Address	DD = Data (Hex)	CL = CRC Lo Byte
FC = Function Code	WW = Data (On/Off)	CH = CRC Hi Byte
RA = Register Address	SF = Sub-Function	CR = Carriage Return
NR = Number of Registers	EC = Error Code	LF = Line Feed
NB = Number of bytes	LRC = ASCII Checksum	

FC Action		> 3.5					Byte	e Num	ber				
ГС	ACTION	Char	1	2	3	4	5	6	7	8	9	10	11
03 03	Request Response	NoTx NoTx	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR CL	CL CH	СН			
04 04	Request Response	NoTx NoTx	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR CL	CL CH	СН			
05 05	Request Response	NoTx NoTx	MA MA	FC FC	RA RA	RA RA	WW WW	WW WW	CL CL	CH CH			
08 08	Request Response	NoTx NoTx	MA MA	FC FC	SF SF	SF SF	WW DD	WW DD	CL CL	CH CH			
10 10	Request Response	NoTx NoTx	MA MA	FC FC	RA RA	RA RA	NR NR	NR NR	NB CL	DD* CH	DD*	CL	СН
	xception lesponse	NoTx	MA	FC +80	EC	CL	СН						

DD* = (DD DD) times NR (Number of Registers)

Modbus ASCII Format

Except for the colon, CR and LF, each column is 2 hex character bytes. $DD^* = (DD DD)$ times NR (Number of Registers)

FC	FC Action		Column Number											
FU	ACTION	1	2	3	4	5	6	7	8	9	10	11	12	13
03	Request	•••	MA	FC	RA	RA	NR	NR	LRC	CR	LF			
03	Response	:	MA	FC	NB	DD*	DD*	LRC	CR	LF				
04	Request	•••	MA	FC	RA	RA	NR	NR	LRC	CR	LF			
04	Response	:	MA	FC	NB	DD*	DD*	LRC	CR	LF				
05	Request	:	MA	FC	RA	RA	WW	WW	LRC	CR	LF			
05	Response	:	MA	FC	RA	RA	WW	WW	LRC	CR	LF			
08	Request	•••	MA	FC	SF	SF	WW	WW	LRC	CR	LF			
08	Response	:	MA	FC	SF	SF	DD*	DD^*	LRC	CR	LF			
10	Request	:	MA	FC	RA	RA	NR	NR	NB	DD*	DD*	LRC	CR	LF
10	Response	:	MA	FC	RA	RA	NR	NR	LRC	CR	LF			
Excep	otion	:	MA	FC	EC	LRC	CR	LF						
Resp	onse			+80										

10. MESSAGE EXAMPLES FOR DEVICE ADDRESS = 01, NO PARITY

Example	Action	Modbus RTU	Modbus ASCII
Lyampie	Action	$Ser_4 = 010$ Addr = 001	$Ser_4 = 020$ Addr = 001
Restart Com-	Request	010800010000 B1CB	:010800010000 F6 crlf
munications*	Response	010800010000 B1CB	:010800010000 F6 crlf
Meter Reset	Request	01050001FF00 DDFA	:01050001FF00 FA crlf
	Response	None	None
Digital Reading	Request	010400030002 81CB	:010400030002 F6 crlf
= +25.18	Response	010404000009D6 7C4A	:010404000009D6 18 crlf
Write Setpoint	Request	0110000100020400000E74 3624	:0110000100020400000E74 66 crlf
1 = +37.00	Response	011000010002 1008	:011000010002 EC crlf
Read Setpoint 1	Request	010300010002 95CB	:010300010002 F9 crlf
= +37.00	Response	01030400000E74 FE74	:01030400000E74 76 crlf
Send -12.34 to	First send de	cimal point, address 0057 as 00 03	3.
Remote Display	Request	01100069000204FFFFB2E F6E5	:01100069000204FFFFB2E59crlf
or LTS **	Response	011000690002 91D4	:011000690002 84 crlf

* Suggested as first message after power-up. If device is in Listen-Only mode, no response is returned.

** 1234 decimal = 000004D2 hex. -1234 = FF FF FB 2E in 4-byte 2's complement hex. Decimal point is ignored.

RTU: Bolded last 4 characters indicate the CRC (added automatically by the device). **ASCII:** Bolded last 2 characters indicate the LRC ((added automatically by the device).

Because the Counter/Timer can provide up to 3 display items during normal operation, it can be used to provide additional features when used as a Remote Display. It is possible to send Remote Data to Item 3 using addresses 006B,C or 006D,E. If the Counter/Timer is set up with the "Source" menu item set to Item 3, it will make alarm comparisons to its Setpoints using the Remote Data. Likewise, the Analog Output will respond to the Remote Data if "AnSEt" selects Item 3 for the Analog Output source and the Display mode (Config Dig 3 = 7).

Address 0069,A sends Remote Data to the display only (any Display mode). Address 006B,C sends Remote Data to Item 3 only for Alarms and/or Analog Out. Address 006D,E sends Remote Data to both the display and Item 3.

11. DATA TYPES INTERNAL REGISTERS

Note: Meters and the analog input transmitter only have 5 digits and 5 decimal points.

C = Bits of 2's Complement Binary Value

M = Bits of Positive Binary Magnitude

B = Bits of Configuration Data

For Modbus RTU, each data character consists of 8 bits (or 1 byte).

For Modbus ASCII, each data character consists of 4 bits (or 1 hexadecimal nibble). Data characters are sent most significant first, lease significant last.

2C32 Two's Complement (4 bytes)

<u>Hi Word (Register)</u>	Lo Word (Register)				

M32 Binary Magnitude (4 bytes)

Hi Word (Register)	Lo Word (Register)				
MMMM MMMM MMMM MMMM	MMMM MMMM MMMM MMMM				

M31 Sign + Binary Magnitude (4 bytes)

Hi Word (Register) Lo Word (Register)

SMMM MMMM MMMM MMMM MMMM MMMM MMMM

M48 Binary Magnitude (6 bytes

Hi Word (Register)Mid Word (Register)Lo Word (Register)XXXX XXXX MMMM MMMMMMMM MMMM MMMM MMMMMMMM MMMM MMMMIgnore XXXX XXXX - Use LS 5-byte result5-byte result

B16 Bit Significance

M16 Binary Magnitude

M15 Sign + Binary Magnitude

<u>Hi Byte</u>	Lo Byte	<u>Hi Byte</u>	Lo Byte	<u>Hi Byte</u>	Lo Byte
0000 0000	BBBB BBBB	XXXX XXXX	XXXX XXXX	SXXX XXXX	XXXX XXXX
	7654 3210				

12. METER & ANALOG INPUT TRANSMITTER INTERNAL REGISTER ADDRESSES

Data Types - as shown: FC03 READ and FC10 (dec16) WRITE

Use high word starting Register Addresses and an even number of Registers.

Register Address		Desister Nemo	Data	Scaling &
Dec*	Hex*	Register Name	Туре	Dec Point
1	0001	Setpoint 1 (Hi word)	2C32	Dec pt same
2	0002	Setpoint 1 (Lo word)		as displayed
3	0003	Setpoint 2 (Hi word)		Dec pt same
4	0004	Setpoint 2 (Lo word)	2C32	as displayed
5	0005	Setpoint 3 (Hi word) (not for Scale Meter)	2C32	Dec pt same
6	0006	Setpoint 3 (Lo word) (not for Scale Meter)	2032	as displayed
7	0007	Setpoint 4 (Hi word) (not for Scale Meter)	2C32	Dec pt same
8	0008	Setpoint 4 (Lo word) (not for Scale Meter)	2032	as displayed
9	0009	Scale (Hi word)	2C32	** See
10	000A	Scale (Low word)	2032	footnote
11	000B	Offset (Hi word)	2C32	Dec pt same
12	000C	Offset (Low word)	2032	as displayed
17	0011	Lo In (Hi word)	2C32	Uses dec pt
18	0012	Lo In (Low word)		of input range
19	0013	Lo Rd (Hi word)	2C32	Dec pt same
20	0014	Lo Rd (Low word)	2002	as displayed
21	0015	Hi In (Hi word)	2C32	Uses dec pt
22	0016	Hi In (Low word)	2032	of input range
23	0017	Hi Rd (Hi word)	2C32	Dec pt same
24	0018	Hi Rd (Low word)	2032	as displayed
25	0019	Rd0 (Hi word) (tare for Scale Meter)	2C32	Dec pt same
26	001A	Rd0 (Lo word) (tare for Scale Meter)	2002	as displayed
33	0021	Deviation 1 (Hi word) (SP1DIFF for Sc M)	2C32	Dec pt same
34	0022	Deviation 1 (Lo word) (SP1DIFF for Sc M)		as displayed
35	0023	Deviation 2 (Hi word) (SP2DIFF for Sc M)		Dec pt same
36	0024	Deviation 2 (Lo word) (SP2DIFF for Sc M)		as displayed
37	0025	Deviation 3 (Hi word) (not for Scale Meter)		Dec pt same
38	0026	Deviation 3 (Lo word) (not for Scale Meter)	2C32	as displayed
39	0027	Deviation 4 (Hi word) (not for Scale Meter)	2C32	Dec pt same

40	0028	Deviation 4 (Lo word) (not for Scale Meter)		as displayed
41	0029	Analog Lo (Hi word)	2C32	Dec pt same
42	002A	Analog Lo (Lo word)	2032	as displayed
43	002B	Analog Hi (Hi word)	2C32	Dec pt same
44	002C	Analog Hi (Lo word)	2032	as displayed

* Values are for Base 1 Standard addressing. Add 1 for Base 0 PLC addressing.
** Scale = .0001 x dec value of (Hi word + Lo word)

Data Type B16

For the following, use any starting Register Address and any number of Registers.

Registe	r Address	Desister Nome	Dit Cignificance
Dec	Hex	Register Name	Bit Significance
65	0041	Alarm Config 1	Bit 0 0 = AL1 Hi Active 1 = Lo Active
			Bit 1 $0 = AL1$ Enabled, $1 = Disabled$
			Bit 2 0 = AL2 Hi Active 1 = Lo Active
			Bit 3 0 = AL2 Enabled 1 = Disabled
			Bit 4 0 = AL1 Non-Latched 1 = Latched
			Bit 5 0 = AL2 Non-Latched 1 = Latched
			Bit 6 0 = Relay1 Active On 1 = Off
			Bit 7 0 = Relay2 Active On 1 = Off
66	0042	Alarm Config 2	Bits 2:0 # Readings before Alarms 1 & 2.
			000 = 1,001 = 2,010 = 4,011 = 8,100 = 16,
			$101 = 32, \ 110 = 64, \ 111 = 128$
			Bit 3 AL1 0 = Deviation 1 = Hysteresis
			Bit 4 AL2 0 = Deviation 1 = Hysteresis
			Bit 5 0 = Deviation in Menu 1 = Omitted
67	0043	Alarm Config 3	Bit 0 0 = AL3 Hi Active 1 = Lo Active
		(not applicable	Bit 1 0 = AL3 Enabled 1 = Disabled
		to Scale Meter)	Bit 2 0 = AL4 Hi Active 1 = Lo Active
			Bit 3 0 = AL4 Enabled 1 = Disabled
			Bit 4 0 = AL3 Non-Latched 1 = Latched
			Bit 5 0 = AL4 Non-Latched 1 = Latched
			Bit 6 0 = Relay3 Active On 1 = Off
			Bit 7 0 = Relay4 Active On 1 = Off
68	0044	Alarm Config 4	Bits 2:0 = # Readings before Alarm 3 & 4
		(not applicable	000 = 1,001 = 2,010 = 4,011 = 8,100 = 16,
		to Scale Meter)	101 = 32 110 = 64 111 = 128
			Bit 3 AL3 0 = Deviation 1 = Hysteresis
			Bit 4 AL4 0 = Deviation 1 = Hysteresis
			Bit 5 0 = Deviation in Menu 1 = Omitted

69	0045	Input Type	Lo Byte Hex value					
		input type	40-4D Thermocouple JF, C, KF, KC, NF, NC, EF, EC,					
				•	TC, SF, SC, RF, RC			
				•		C, 3-wire DIN°F, 3-wire		
					•	3-wire ANSI°C, 2-wire		
						-wire ANSI°F, 2-wire		
				NSI°C, Sho		,		
			50-57 R	TD post-20	09: DIN°F,	DIN°C, ANSI°F,		
			A	NSI [°] C, Ni°F	, Ni°C, Cu	°F, Cu°C,		
			60-64 D	C 0.2V, 2V,	, 20V, 200\	/, 660V		
			70-73 D	C 2 mA, 20	mA, 200 r	mA, 5A		
			A0-A2 R	atio 0.2V, 2	2V, 20V			
			80-84 R	MS 0.2V, 2	V, 20V, 20	0V, 660V		
			90-93 R	MS 2 mA, 2	20 mA, 200) mA, 5A		
			C0-C4 S	train 20, 50), 100, 250	, 500 mV		
						250, 500 mV		
			E0-E4 0	hms 20, 20	0, 2000, 2	0K, 200K		
70	0046	Setup	Bits 3:0	Ctrl In 1		Both Reset		
		(applicable to	Hex O	M Reset		M Reset		
		DPM)	Hex 1		Pk, Vy	M Reset		
			Hex 2	M Hold	, ,	F Reset		
		M = Meter	Hex 3	M Hold	Tare	M Reset		
		F = Function	Hex 4	Pk, Vy	Tare	FReset		
		D = Display	Hex 5	Tare		M Reset		
			Hex 6	DP2	DP3	DP5 Neither = DP1		
			Hex 7	DP3	DP4	DP6 Neither = DP2		
			Hex 8	F Reset	D Blank	M Reset		
			Hex 9	M Hold	D Blank	M Reset		
			Hex A	Pk, Vy Taro	D Blank	F Reset M Posot		
			Hex B Hex C	Tare Valley	D Blank Peak	M Reset F Reset		
			Hex D	Tare	T Reset	M Reset		
				ιαισ	1 110301	ΙΝΙ ΓΙΟΟΟΙ		
			Bits 5:4					
			Hex 00 Scale using Scale, Offset Hex 01 Scale using Coordinates of 2 Points					
			Hex 10		-	g Coordinates		
			Bit 6	Spare	ng nouuni	5 0001 amatoo		
			Bit 7	•	z, 1 = 50 Hz	7		
L	I			0 = 00 112	-, - = 00 112	_		

70	0046	Satur	Bits 3:0	Ctrl In 1	Ctrl In 0	Poth Docot
70	0040	Setup		Ctrl In 1	Ctrl In 2	Both Reset
		(applicable to	Hex 0	M Reset	M Hold	M Reset
		Scale Meter)	Hex 1	F Reset	Peak D	M Reset
			Hex 2	M Hold	Peak D	F Reset
		M = Meter	Hex 3	M Hold	Tare	Tare
		F = Function	Hex 4	Peak	Tare	F Reset
		D = Display	Hex 5	M Reset	Tare	M Reset
		T = Tare	Hex 6	F Reset	Tare	M Reset
			Hex 7	T Reset	Tare	M Reset
			Hex 8	D Blank	Tare	M Reset
			Hex 9	M Reset	D Blank	M Reset
			Hex A	F Reset	D Blank	M Reset
			Hex B	D Item	Tare	Tare
			Hex C	D Item	D Blank	F Reset
			Hex D	M Reset	D Item	M Reset
			Hex E	F Reset	D Item	M Reset
			Hex F	M Hold	D Item	M Reset
			Bit 4	0 = Scale	, Offset	1 = Coord of 2 Points
			Bit 5	0 = Peak	key is Peał	1 = Peak key is Tare
			Bit 6	0 = 60 Hz	<u>,</u>	1 = 50 Hz
			Bit 7	0 = No du	ımmy zero	1 = Dummy zero
71	0047	Filter	Bits 3:0 Filt	ering		
			Hex 0	= Auto Filt	er, 1 = Bat	ch 16, 2-9 = Moving
			Avg, 2	2 = .08S, 3	= .15S, 4 =	= .3S, 5 = .6S, 6 = 1.2S,
			7 = 2.	4S, 8 = 4.8	S, 9 = 9.68	S, A = Unfiltered
			Bit 4 0 = Lo	ow Adaptiv	е	1 = High Adaptive
				•		1 = Display Filtered
			Bit 6 $0 = Pe$	eak of Unfil	tered	1 = Peak of Filtered
			Bit 7 0 = AI	arm source	e Unfiltered	l, 1 = Filtered
72	0048	Options	Do Not Use.			
73	0049	Serial Config 1		ne between	Continuou	s Serial Outputs
10	0010	Contai Coning 1				=.57S, 3=1.1S, 4=2.3S,
						S, 8=36.3S, 9=1M13S,
				•		9M40S, D=19M20S,
				88M41S, F₌		
				id Rate		
					1 – 600 0 [.]	10 = 1200, 011 = 2400,
						110 = 19200
						e, 1 = Send Filtered Val
					itereu vaiut	

74	004A	Serial Config 2	Rite 1.0	Mater Serial Address	(0-31) [Non-Modbus]		
/4	004A	Senar Conny 2	DILS 4.0	Hex $0 = \text{Broadcast}(01)$. ,		
				OF = 15, 10 = 16, 1F =			
			Dit 5	Bit 5 0 = Continuous Mode, 1 = Command Mode			
			Bit 6	,			
			Bit 7		-		
75	004B	Carial Config 2			R, 1 = LF following CR		
75	004D	Serial Config 3	DILS Z.U	for DPM. Data sent in s			
				0 = Reading, 1 = Peak			
				3 = Rdg + Peak, 4 = R			
			Dito 2.0	5 = Rdg + Peak + Vall for Scale Meter	еу		
			DILS Z.U				
				0 = Net + Gross			
				1 = Net only			
				2 = Gross only 3 = Peak only			
				4 = Net + Gross + Pea			
			Bit 3	4 = Net + Gross + Pea 0 = Termination chars			
				1 = " at end of			
			Bit 4	0 = Non-latching RTS			
			Bit 5	0 = Normal continuou			
				1 = Special Start & St			
			Bit 6	0 = Full Duplex	-		
76	004C	Serial Config 4			01 = 0dd Parity		
10	0010	Contai Connig 1	Dito 1.0	10 = Even Parity	or – odd r drity		
			Bits 3:2	00 = Custom ASCII	01 = Modbus BTU		
				10 = Modbus ASCII			
			Bits 5:4	Modbus ASCII Gap Ti	meout		
				00 = 1S, 01 = 3S, 10 =			
77	004D	Config	Bit 0	0 = Linear Curve			
		(applicable to	Bit 1	0 = 2-wire RTD Read	1= 2-wire RTD Short		
		DPM)	Bits 2	0 = No Auto-tare	1 = Auto-tare		
			Bits 4:3	Peak button display re	esponse		
				00 = Peak	01 = Valley		
				10 = Peak then Vall.	11 = Tare		
			Bits 7:5	000 = Not Rate	001 = Rate x 0.1,		
				010 = Rate x 1			
				100 = Rate x 100	101 = Rate x 1000		
				110 = Rate x 10000			
77	004D	Config	Bit 1		1 = peak of gross value		
		(applicable to	Bit 2	0 = Dribble enabled			
		Scale Meter)	Bit 3	0 = Scale & offset set	-		
				1 = Reading coordinat	tes of 2 points method		

78	004E	Lockout 1		0 = Enabled, 1 = Lock	ed out		
		(applicable to	Bit 0	Offset, Lo, Hi Rd Bit 1 Scale, Lo In, Hi In			
		DPM)	Bit 2	Filter	Bit 3 Setup, Config, DP		
		,	Bit 4	Input Type	17 07		
78	004E	Lockout 1		0 = Enabled, 1 = Lock	ed out		
		(applicable to	Bit 0	Count Bit	1 Setup, Config, DP		
		Scale Meter)	Bit 2	Input Type Bit	3 Change Display Item#		
		,	Bit 4	Tare Bit	5 Offset, Lo Rd, Hi Rd		
			Bit 6	Scale, Lo, Hi In Bit			
79	004F	Lockout 2	Bit 0	Serial Comm Config			
			Bit 1	Analog Out Scaling			
			Bit 2	Alarm Setpoint Progra	amming		
			Bit 3	Alarm Config	-		
			Bit 4	Front Panel Meter Res	set		
			Bit 5	Front Panel Function	Reset		
			Bit 6	View Setpoints Bit	7 View Peak		
81	0051	Setup 1	Bits 1:0	00 = 4 - 1/2 Digits, 0.1	degree		
		(not for Scale		01 = Slave Remote Di	-		
		Meter)		10 = 4 - 1/2 Dig/10, 0.0			
		,		11 = 3-1/2 Digits,1 de	gree		
81	0051	Count (applies	Bits 3:0	0 = No auto-zero band	d 1= 1-count zero band		
		to Scale Meter)		2 = 2-count zero band	3 = 3-count zero band		
		,		Etc.	9 = 9-count zero band		
			Bits 6:4	0 = Count by 1	1 = Count by 2		
				2 = Count by 5	3 = Count by 10		
				4 = Count by 20	5 = Count by 50		
				6 = Count by 100			
82	0052	Analog Output	Bit 0	0 = Source Unfiltered	1 = Filtered		
		Setup (applies	Bit 1	0 = Current Output	1 = Voltage Output		
		to DPM)	Bits 2:1	•	č i		
		,		01 = Voltage (0-10V)	, , , ,		
82	0052	Analog Output	Bit 0	0 = Net Value	1 = Gross Value		
		Setup (applies	Bit 1	0 = Filtered	1 = Unfiltered		
		to Scale Meter)	Bits 3:2	00 = Current (0-20 m.	A) 10 = Curr. (4-20 mA)		
		,		01 = Voltage (0-10V)	11 = Voltage (±10V)		
87	0057	System Decimal	Bits 2:0	š ()	010 = dddd.d		
		Point		011 = ddd.dd	100 = dd.ddd		
				101 = d.dddd	110 = .ddddd		
93	005D	Start Character	Bits 7:0	ASCII Hex Character			
94	005E	Stop Character	Bits 7:0	ASCII Hex Character			
95	005F	Modbus Addr.	Bits 7:0	Hex value of Decimal	Address from 1-255		

READ ONLY (FC03) – Data Type B16

0064	Analog Output	Bits 7:0	0 = none,		
	DAC Type		1 = 1 output, unipolar (12-bit, pre 2009)		
			2 = 1 output, unipolar (16-bit, pre 2009)		
			3 = 1 output, uni or bipolar (16-bit, post 2009)		
			4 = 2 outputs, unipolar (16-bit, post 2009, not		
			for Scale Meter)		
0065	Device Type	Bits 7:0	01 = DPM meter 02 = Scale meter		
			03 = Counter/timer met. 05 = DPM transmitter		
			06 = Scale transmitter		
			07 = Counter/timer transmitter		
0066	Revision	Bits 7:0	Hex value of Decimal Revision number		
0067	Overload Value	Bits 7:0	Hex overload value		
0068	Signal Condi-	Bits 7:0	01 = DC, TC/RTD (pre 2009)		
	tioner Type		02 = RMS (pre 2009)		
			03 = Load Cell		
			22 = RMS (post 2009)		
			31 = TC (post 2009)		
			41 = RTD or Ohms (post 2009)		
	0065 0066 0067	DAC TypeDAC Type0065Device Type0066Revision0067Overload Value0068Signal Condi-	DAC TypeDAC TypeDAC Type0065Device TypeBits 7:00066RevisionBits 7:00067Overload ValueBits 7:00068Signal Condi-Bits 7:0		

WRITE ONLY (FC10 dec16) – Data Type 2C32

105	0069	Display Data (Hi Word)	Hi word of Remote Data to be displayed.
106	006A	Display Data (Lo Word)	Lo word of Remote Data to be displayed.

13. COUNTER / TIMER REGISTER ADDRESSES FC03 & FC10 (dec16)

Data Types - as shown

Use high word starting Register Addresses and an even number of Registers.

Register	Address	Register Name	Data	Scaling & Decimal Point
Dec*	Hex*	negister Maille	Туре	
1	0001	Setpoint 1 (Hi word)	2C32	Dec point same as displayed.
2	0002	Setpoint 1 (Lo word)	2C32	
3	0003	Setpoint 2 (Hi word)	2C32	Dec point same as displayed.
4	0004	Setpoint 2 (Lo word)	2C32	
5	0005	Setpoint 3 (Hi word)	2C32	Dec point same as displayed.
6	0006	Setpoint 3 (Lo word)	2C32	
7	0007	Setpoint 4 (Hi word)	2C32	Dec point same as displayed.
8	0008	Setpoint 4 (Lo word)	2C32	
9	0009	Scale 1Y (Hi word)	M32	Scale = .00001 x dec value

10000AScale 1Y (Lo word)M32of (Hi word + Lo word)**11000BOffset 1 (Li word)2C32Dec point same as displayed.12000CScale 2Y (Lo word)M32Scale = .00001 x dec value14000EScale 2Y (Lo word)M32Scale = .00001 x dec value14000FOffset 2 (Li word)2C32Dec point same as displayed.15000FOffset 2 (Lo word)2C32Dec point same as displayed.160010Offset 2 (Lo word)2C32Lo In = .00001 x dec value180012Lo In 1 (Lo word)2C32Dec point same as displayed.200014Lo Rd 1 (Hi word)2C32Dec point same as displayed.210015Hi In 1 (Lo word)2C32Oec point same as displayed.220016Hi In 1 (Lo word)2C32Of (Hi word + Lo word)**230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Lo Rd 2 (Hi word)2C32Dec point same as displayed.26001ALo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Hi word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Hi word)2C32Dec point same					I
12000COffset 1 (Lo word)2C32Scale 2Y (Hi word)M3213000DScale 2Y (Lo word)M32Scale = .00001 x dc value14000EScale 2Y (Lo word)M32Dc point same as displayed.15000FOffset 2 (Li word)2C32Dc point same as displayed.160010Offset 2 (Lo word)2C32Lo In = .00001 x dcc value180012Lo In 1 (Li word)2C32Lo In = .00001 x dcc value190013Lo Rd 1 (Hi word)2C32Dc point same as displayed.200014Lo Rd 1 (Lo word)2C32Hi In = .00001 x dcc value210015Hi In 1 (Lo word)2C32Oc point same as displayed.200016Hi In 1 (Lo word)2C32Oc point same as displayed.210016Hi In 1 (Lo word)2C32Dc point same as displayed.220016Hi Rd 1 (Lo word)2C32Dc point same as displayed.240018Hi Rd 1 (Lo word)2C32Dc point same as displayed.250019Lo In 2 (Hi word)2C32Dc point same as displayed.28001CLo Rd 2 (Lo word)2C32Dc point same as displayed.30001EHi In 2 (Lo word)2C32Dc point same as displayed.31001FHi Rd 2 (Lo word)2C32Dc point same as displayed.320020Deviation 1 (Hi word)M32Dcc point same as displayed.330021Deviation 1 (Hi word)M32Dcc point same			· · · · · · · · · · · · · · · · · · ·		
130000Scale 2Y (Hi word)M32Scale = .00001 x dec value of (Hi word + Lo word)**14000EScale 2Y (Lo word)M32Dec point same as displayed.15000FOffset 2 (Li word)2C32Dec point same as displayed.160010Offset 2 (Lo word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**190013Lo Rd 1 (Hi word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**200014Lo Rd 1 (Lo word)2C32Dec point same as displayed.210015Hi In 1 (Hi word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**230017Hi Rd 1 (Lo word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**250019Lo In 2 (Lo word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**26001ALo In 2 (Lo word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**27001BLo Rd 2 (Hi word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**30001EHi In 2 (Lo word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)M32330021Deviation 1 (Hi word)M32340022Deviation 3 (Hi word)M32350023Deviation 3 (· · · · · · · · · · · · · · · · · · ·		Dec point same as displayed.
14000EScale 2Y (Lo word)M32of (Hi word + Lo word)**15000FOffset 2 (Li word)2C32Dec point same as displayed.160010Offset 2 (Lo word)2C32Lo In 1 (Li word)2C32170011Lo In 1 (Li word)2C32Lo In = .00001 x dec value180012Lo Rd 1 (Hi word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Dec point same as displayed.210015Hi In 1 (Lo word)2C32Hi In = .00001 x dec value220016Hi In 1 (Lo word)2C32Dec point same as displayed.230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value26001ALo In 2 (Hi word)2C32Lo In = .00001 x dec value26001ALo In 2 (Lo word)2C32Lo In = .00001 x dec value27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Hi In = .00001 x dec value30001EHi In 2 (Lo word)2C32Dec point same as displayed.320017Hi Rd 2 (Hi word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 2 (Lo word)M32Dec point same as displayed.350023Deviation 3 (Hi word)M32Dec poi			· · · · · · · · · · · · · · · · · · ·		
15000FOffset 2 (Hi word)2C32Dec point same as displayed.160010Offset 2 (Lo word)2C32Lo In 1 (Hi word)2C32170011Lo In 1 (Lo word)2C32Lo In = .00001 x dec value180012Lo Rd 1 (Hi word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Dec point same as displayed.210015Hi In 1 (Lo word)2C32Hi In = .00001 x dec value220016Hi In 1 (Lo word)2C32Dec point same as displayed.230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Dec point same as displayed.250019Lo In 2 (Lo word)2C32Lo In = .00001 x dec value26001ALo Rd 2 (Lo word)2C32Dec point same as displayed.27001BLo Rd 2 (Lo word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Hi word)M32Dec point same as displayed.340022Deviation 1 (Hi word)M32M32350023Deviation 2 (Lo word)M32360024Deviation 3 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 3 (Hi word)M3239 <td< td=""><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td></td<>			· · · · · · · · · · · · · · · · · · ·		
160010Offset 2 (Lo word)2C32170011Lo In 1 (Hi word)2C32180012Lo In 1 (Lo word)2C32200014Lo Rd 1 (Hi word)2C32200014Lo Rd 1 (Lo word)2C32210015Hi In 1 (Hi word)2C32200014Lo Rd 1 (Lo word)2C32210015Hi In 1 (Hi word)2C32200016Hi In 1 (Lo word)2C32210015Hi Rd 1 (Hi word)2C32230017Hi Rd 1 (Hi word)2C32240018Hi Rd 1 (Lo word)2C32250019Lo In 2 (Hi word)2C3226001ALo In 2 (Lo word)2C3227001BLo Rd 2 (Hi word)2C3228001CLo Rd 2 (Lo word)2C3229001DHi In 2 (Lo word)2C3229001EHi In 2 (Lo word)2C3231001FHi Rd 2 (Hi word)2C32330021Deviation 1 (Hi word)M32340022Deviation 1 (Lo word)M32350023Deviation 3 (Lo word)M32360024Deviation 3 (Lo word)M32370025Deviation 3 (Lo word)M32380026Deviation 3 (Lo word)M32390027Deviation 3 (Lo word)M32410029Analog Lo 1 (Hi word)2C3242002AAnalog Lo 1 (Hi word)2C32<			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
170011Lo In 1 (Hi word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**180012Lo In 1 (Lo word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**210015Hi In 1 (Hi word)2C32C32210016Hi In 1 (Lo word)2C32of (Hi word + Lo word)**230017Hi Rd 1 (Lo word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**250019Lo In 2 (Hi word)2C32Dec point same as displayed.26001ALo Rd 2 (Lo word)2C32Dec point same as displayed.270018Lo Rd 2 (Hi word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.340022Deviation 1 (Hi word)M32Dec point same as displayed.350023Deviation 3 (Lo word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.390027Deviation 3 (Lo word)M32Dec point same as displayed.40<		000F			Dec point same as displayed.
180012Lo In 1 (Lo word)2C32of (Hi word + Lo word)**190013Lo Rd 1 (Hi word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Dec point same as displayed.210015Hi In 1 (Hi word)2C32Of (Hi word + Lo word)**230017Hi Rd 1 (Lo word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Dec point same as displayed.250019Lo In 2 (Hi word)2C32Lo In = .00001 x dec value6001ALo In 2 (Lo word)2C32Dec point same as displayed.270018Lo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.29001DHi In 2 (Hi word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.340022Deviation 1 (Lo word)M32Dec point same as displayed.350023Deviation 2 (Lo word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.390027Deviation 4 (Hi word)2C32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32 <t< td=""><td></td><td>0010</td><td>Offset 2 (Lo word)</td><td></td><td></td></t<>		0010	Offset 2 (Lo word)		
190013Lo Rd 1 (Hi word)2C32Dec point same as displayed.200014Lo Rd 1 (Lo word)2C32Hi In = .00001 x dec value210015Hi In 1 (Hi word)2C32Of (Hi word + Lo word)**230017Hi Rd 1 (Lo word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value260014Lo In 2 (Hi word)2C32Lo In = .00001 x dec value260014Lo In 2 (Lo word)2C32Dec point same as displayed.270018Lo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.30001FHi Rd 2 (Hi word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Lo word)M32Dec point same as displayed.340022Deviation 2 (Lo word)M32Dec point same as displayed.350023Deviation 2 (Lo word)M32Dec point same as displayed.360024Deviation 3 (Hi word)M32Dec point same as displayed.390027Deviation 4 (Hi word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.420028Analog Lo 1 (Hi word)2C32<	17	0011	Lo In 1 (Hi word)	2C32	Lo In = $.00001 \text{ x}$ dec value
200014Lo Rd 1 (Lo word)2C32210015Hi In 1 (Hi word)2C32Vi In 1 = .00001 x dec value220016Hi In 1 (Lo word)2C32Dec point same as displayed.230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value260014Lo In 2 (Hi word)2C32Lo In = .00001 x dec value26001ALo In 2 (Lo word)2C32Dec point same as displayed.27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32M32340022Deviation 2 (Lo word)M32350023Deviation 3 (Hi word)M32360024Deviation 3 (Lo word)M32390027Deviation 4 Lo word)M32410029Analog Lo 1 (Lo word)2C32430028Analog Lo 1 (Lo word)2C3244002CAnalog Lo 1 (Hi word)2C3245002DAnalog Lo 2 (Hi word)2C3245002DAnalog Lo 2 (Hi word)2C32<	18	0012		2C32	of (Hi word + Lo word)**
210015Hi In 1 (Hi word)2C32Hi In = .00001 x dec value220016Hi In 1 (Lo word)2C32Of (Hi word + Lo word)**230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value260014Lo In 2 (Lo word)2C32Of (Hi word + Lo word)**270018Lo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.29001DHi In 2 (Hi word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.340022Deviation 1 (Hi word)M32Dec point same as displayed.350023Deviation 2 (Lo word)M32M32360024Deviation 4 (Hi word)M32Dec point same as displayed.380026Deviation 4 (Hi word)M32Dec point same as displayed.400028Analog Lo 1 (Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Lo 1 (Hi word)2C32Dec point same	19	0013	Lo Rd 1 (Hi word)	2C32	Dec point same as displayed.
220016Hi In 1 (Lo word)2C32of (Hi word + Lo word)**230017Hi Rd 1 (Hi word)2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32Lo In = .00001 x dec value26001ALo In 2 (Lo word)2C32Dec point same as displayed.27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.29001DHi In 2 (Lo word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.340022Deviation 1 (Hi word)M32M32350023Deviation 2 (Lo word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32M32390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Analog Lo 1 (Hi word)2C32Dec point same as displayed.410029Analog Lo 1 (Lo word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Lo 1 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.<	20	0014	Lo Rd 1 (Lo word)	2C32	
230017Hi Rd 1 (Hi word)2C32 2C32Dec point same as displayed.240018Hi Rd 1 (Lo word)2C32 2C32Lo In = .00001 x dec value of (Hi word + Lo word) **250019Lo In 2 (Lo word)2C32 2C32Lo In = .00001 x dec value of (Hi word + Lo word) **26001ALo Rd 2 (Hi word)2C32 2C32Dec point same as displayed.27001BLo Rd 2 (Lo word)2C32 2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32 2C32Hi In = .00001 x dec value of (Hi word + Lo word) **30001EHi In 2 (Lo word)2C32 2C32Dec point same as displayed.31001FHi Rd 2 (Hi word)2C32 2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32 2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32 M32Dec point same as displayed.340022Deviation 2 (Lo word)M32 M32Dec point same as displayed.360024Deviation 3 (Lo word)M32 M32Dec point same as displayed.380026Deviation 4 (Hi word)M32 M32Dec point same as displayed.400028Analog Lo 1 (Lo word)2C32 Z23Dec point same as displayed.410029Analog Lo 1 (Lo word)2C32 Z23Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32 Z23Dec point same as displayed.44002CAnalog Lo 2 (Hi w	21	0015	Hi In 1 (Hi word)	2C32	Hi In $=$.00001 x dec value
240018Hi Rd 1 (Lo word)2C32250019Lo In 2 (Hi word)2C32Lo In = .00001 x dec value26001ALo In 2 (Lo word)2C32Core point same as displayed.27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Hi In = .00001 x dec value30001EHi In 2 (Hi word)2C32Dec point same as displayed.30001EHi In 2 (Lo word)2C32Dec point same as displayed.31001FHi Rd 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Li word)M32Dec point same as displayed.340022Deviation 2 (Lo word)M32Dec point same as displayed.360024Deviation 3 (Lo word)M32Dec point same as displayed.380026Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Lo 2 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point s	22	0016	Hi In 1 (Lo word)	2C32	of (Hi word + Lo word)**
250019Lo In 2 (Hi word)2C32Lo In = .00001 x dec value of (Hi word + Lo word)**26001ALo In 2 (Lo word)2C32Co (Hi word + Lo word)**27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**30001EHi In 2 (Lo word)2C32Hi In = .00001 x dec value of (Hi word + Lo word)**31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.340022Deviation 1 (Hi word)M32Dec point same as displayed.350023Deviation 2 (Lo word)M32Dec point same as displayed.360024Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Lo 2 (Hi word)2C32Dec point same as displayed.44002CAnalog Lo 2 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Lo word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32 <td< td=""><td>23</td><td>0017</td><td>Hi Rd 1 (Hi word)</td><td>2C32</td><td>Dec point same as displayed.</td></td<>	23	0017	Hi Rd 1 (Hi word)	2C32	Dec point same as displayed.
26001ALo In 2 (Lo word)2C32of (Hi word + Lo word)**27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C32Dec point same as displayed.29001DHi In 2 (Hi word)2C32of (Hi word + Lo word)**30001EHi In 2 (Lo word)2C32of (Hi word + Lo word)**31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32Dec point same as displayed.370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.400028Deviation 4 (Hi word)M32Dec point same as displayed.410029Analog Lo 1 (Lo word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Lo 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Lo 2 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo wo	24	0018	Hi Rd 1 (Lo word)	2C32	
27001BLo Rd 2 (Hi word)2C32Dec point same as displayed.28001CLo Rd 2 (Lo word)2C3229001DHi In 2 (Hi word)2C3230001EHi In 2 (Lo word)2C3231001FHi Rd 2 (Hi word)2C32320020Hi Rd 2 (Lo word)2C32330021Deviation 1 (Hi word)M32340022Deviation 1 (Lo word)M32350023Deviation 2 (Hi word)M32360024Deviation 2 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 3 (Lo word)M32390027Deviation 4 (Hi word)M32410029Analog Lo 1 (Hi word)2C3243002BAnalog Lo 1 (Lo word)2C3244002CAnalog Lo 1 (Lo word)2C3245002DAnalog Lo 2 (Hi word)2C3247002FAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word) <td>25</td> <td>0019</td> <td>Lo In 2 (Hi word)</td> <td>2C32</td> <td>$Lo In = .00001 \times dec value$</td>	25	0019	Lo In 2 (Hi word)	2C32	$Lo In = .00001 \times dec value$
28001CLo Rd 2 (Lo word)2C3229001DHi In 2 (Hi word)2C3230001EHi In 2 (Lo word)2C3231001FHi Rd 2 (Lo word)2C32320020Hi Rd 2 (Lo word)2C32330021Deviation 1 (Hi word)M32340022Deviation 1 (Lo word)M32350023Deviation 2 (Hi word)M32360024Deviation 2 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 4 (Hi word)M32390027Deviation 4 (Hi word)M32410029Analog Lo 1 (Lo word)M3242002AAnalog Lo 1 (Lo word)2C3243002BAnalog Lo 1 (Lo word)2C3244002CAnalog Lo 1 (Lo word)2C3245002DAnalog Lo 2 (Hi word)2C3246002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C3247 <td>26</td> <td>001A</td> <td>Lo In 2 (Lo word)</td> <td>2C32</td> <td>of (Hi word + Lo word)**</td>	26	001A	Lo In 2 (Lo word)	2C32	of (Hi word + Lo word)**
29001DHi ln 2 (Hi word)2C32Hi ln = .00001 x dec value of (Hi word + Lo word)**31001FHi ln 2 (Lo word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32Dec point same as displayed.370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Lo 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	27	001B	Lo Rd 2 (Hi word)	2C32	Dec point same as displayed.
30001EHi In 2 (Lo word)2C32of (Hi word + Lo word)**31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 1 (Lo word)M32Dec point same as displayed.350023Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32Dec point same as displayed.370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 (Hi word)M32Dec point same as displayed.410029Analog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Lo 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	28	001C	Lo Rd 2 (Lo word)	2C32	
31001FHi Rd 2 (Hi word)2C32Dec point same as displayed.320020Hi Rd 2 (Lo word)2C32Dec point same as displayed.330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 1 (Lo word)M32Dec point same as displayed.350023Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32Dec point same as displayed.370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	29	001D	Hi In 2 (Hi word)	2C32	Hi In $= .00001 \text{ x}$ dec value
320020Hi Rd 2 (Lo word)2C32330021Deviation 1 (Hi word)M32340022Deviation 1 (Lo word)M32350023Deviation 2 (Hi word)M32360024Deviation 2 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 3 (Lo word)M32390027Deviation 4 (Hi word)M32410029Analog Lo 1 (Hi word)M3242002AAnalog Lo 1 (Lo word)ZC3243002BAnalog Hi 1 (Hi word)2C3244002CAnalog Hi 1 (Lo word)2C3245002DAnalog Lo 2 (Hi word)2C3246002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C3248002FAnalog Hi 2 (Hi word)2C3249002FAnalog Hi 2 (Hi word)2C32 <td>30</td> <td>001E</td> <td>Hi In 2 (Lo word)</td> <td>2C32</td> <td>of (Hi word + Lo word)**</td>	30	001E	Hi In 2 (Lo word)	2C32	of (Hi word + Lo word)**
330021Deviation 1 (Hi word)M32Dec point same as displayed.340022Deviation 1 (Lo word)M32M32350023Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32Dec point same as displayed.370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.43002BAnalog Li 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	31	001F	Hi Rd 2 (Hi word)	2C32	Dec point same as displayed.
340022Deviation 1 (Lo word)M32350023Deviation 2 (Hi word)M32360024Deviation 2 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 3 (Lo word)M32390027Deviation 4 (Hi word)M32400028Deviation 4 Lo word)M32410029Analog Lo 1 (Hi word)2C3243002BAnalog Lo 1 (Lo word)2C3243002BAnalog Hi 1 (Hi word)2C3244002CAnalog Lo 2 (Hi word)2C3245002DAnalog Lo 2 (Hi word)2C3246002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C3248002FAnalog Hi 2 (Hi word)2C3249002FAnalog Hi 2 (Hi word)2C3240002FAnalog Hi 2 (Hi word)2C3241002FAnalog Hi 2 (Hi word)2C3244002CAnalog Hi 2 (Hi word)2C3245002FAnalog Hi 2 (Hi word)2C32 <td>32</td> <td>0020</td> <td>Hi Rd 2 (Lo word)</td> <td>2C32</td> <td></td>	32	0020	Hi Rd 2 (Lo word)	2C32	
350023Deviation 2 (Hi word)M32Dec point same as displayed.360024Deviation 2 (Lo word)M32M32370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.43002BAnalog Lo 1 (Lo word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Hi word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	33	0021	Deviation 1 (Hi word)	M32	Dec point same as displayed.
360024Deviation 2 (Lo word)M32370025Deviation 3 (Hi word)M32380026Deviation 3 (Lo word)M32390027Deviation 4 (Hi word)M32400028Deviation 4 Lo word)M32410029Analog Lo 1 (Hi word)2C3242002AAnalog Lo 1 (Lo word)2C3243002BAnalog Hi 1 (Hi word)2C3244002CAnalog Hi 1 (Hi word)2C3245002DAnalog Lo 2 (Hi word)2C3246002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C3247002FAnalog Hi 2 (Hi word)2C32	34	0022	Deviation 1 (Lo word)	M32	
370025Deviation 3 (Hi word)M32Dec point same as displayed.380026Deviation 3 (Lo word)M32Dec point same as displayed.390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32Dec point same as displayed.410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	35	0023	Deviation 2 (Hi word)	M32	Dec point same as displayed.
380026Deviation 3 (Lo word)M32390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	36	0024	Deviation 2 (Lo word)	M32	
390027Deviation 4 (Hi word)M32Dec point same as displayed.400028Deviation 4 Lo word)M32M32410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	37	0025	Deviation 3 (Hi word)	M32	Dec point same as displayed.
400028Deviation 4 Lo word)M32410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C32Dec point same as displayed.43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	38	0026	Deviation 3 (Lo word)	M32	
410029Analog Lo 1 (Hi word)2C32Dec point same as displayed.42002AAnalog Lo 1 (Lo word)2C322C3243002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	39	0027	Deviation 4 (Hi word)	M32	Dec point same as displayed.
42002AAnalog Lo 1 (Lo word)2C3243002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C32Dec point same as displayed.45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	40	0028	Deviation 4 Lo word)	M32	
43002BAnalog Hi 1 (Hi word)2C32Dec point same as displayed.44002CAnalog Hi 1 (Lo word)2C322C3245002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C322C3247002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	41	0029	Analog Lo 1 (Hi word)	2C32	Dec point same as displayed.
44002CAnalog Hi 1 (Lo word)2C3245002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C32Dec point same as displayed.47002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	42	002A	Analog Lo 1 (Lo word)	2C32	
45002DAnalog Lo 2 (Hi word)2C32Dec point same as displayed.46002EAnalog Lo 2 (Lo word)2C322C3247002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	43	002B	Analog Hi 1 (Hi word)	2C32	Dec point same as displayed.
46002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	44	002C	Analog Hi 1 (Lo word)	2C32	
46002EAnalog Lo 2 (Lo word)2C3247002FAnalog Hi 2 (Hi word)2C32Dec point same as displayed.	45	002D	- , , ,		Dec point same as displayed.
47 002F Analog Hi 2 (Hi word) 2C32 Dec point same as displayed.		002E			
					Dec point same as displayed.
	48	0030		2C32	

* Values are for Base 1 Standard addressing. Add 1 for Base 0 PLC addressing.
** Max Value = 21,474.1

Regist	ter Addr	Register Name	Data	Scaling & Decimal Point
Dec	Hex	neyisler Naille	Туре	
49	0031	GateTime	M16	1-19999 (4E1F) Dec Pt =XXX.XX
50	0032	TimeOut	M16	1-19999 (4E1F) Dec Pt =XX.XXX
51	0033	Pulses	M16	1-59999 (4E1F) Dec Pt =XXXXX.
52	0034	Total B (Hi word)	M48	
53	0035	Total B (Mid word)	M48	
54	0036	Total B (Lo word)	M48	
55	0037	Total A (Hi word)	M48	
56	0038	Total A (Mid word)	M48	
57	0039	Total A (Lo word)	M48	
58	003A	Cutoff	M16	0-65535
50	003B	Calibration	M15	SXXX XXXX XXXX XXXX
				Sign + Magnitude (PPM)

For the following, use any starting Register Addresses and any number of Registers.

Data Type B16

Regist	ter Addr	Register	Bit Significance					
Dec	Hex	Name		Dit Significance				
65	0041	Alarm	Bit 0	0 = AL1 Hi Active	1 = Lo Active			
		Config 1	Bit 1	0 = AL1 Enabled,	1 = Disabled			
			Bit 2	0 = AL2 Hi Active	1 = Lo Active			
			Bit 3	0 = AL2 Enabled	1 = Disabled			
			Bit 4	0 = AL1 Non-Latched	1 = Latched			
			Bit 5	0 = AL2 Non-Latched	1 = Latched			
			Bit 6	0 = Relay1 Active On	1 = Off			
			Bit 7	0 = Relay2 Active On	1 = Off			
66	0042	Alarm	Bits 2:0	# Readings before Alar	ms 1 & 2.			
		Config 2		000 = 1, 001 = 2, 010 =	= 4, 011 = 8, 100 = 16,			
				$101 = 32, \ 110 = 64, \ 1$	11 = 128			
			Bits 4:3	Setpoint Compare Sour	rce			
			Bit 3	AL1 0 = Deviation	1 = Hysteresis			
			Bit 4	AL2 0 = Deviation	1 = Hysteresis			
			Bit 5	0 = Deviation in Menu	1 = Omitted			
67	0043	Alarm	Bit 0	0 = AL3 Hi Active	1 = Lo Active			
		Config 3	Bit 1	0 = AL3 Enabled	1 = Disabled			
			Bit 2	0 = AL4 Hi Active	1 = Lo Active			
			Bit 3	0 = AL4 Enabled	1 = Disabled			
			Bit 4	0 = AL3 Non-Latched	1 = Latched			
			Bit 5	0 = AL4 Non-Latched	1 = Latched			

			Bit 6	0 = Relay3 Activ	e On 1 = Off				
			Bit 7	0 = Relay4 Active					
68	0044	Alarm		# Readings before Alarms 3 & 4.					
		Config 4		•	, 010 = 4, 011 =	8, 100 = 16,			
		Ŭ		101 = 32 110 =	, ,	, ,			
			Bit 3	AL3 0 = Devia	tion 1 = Hyste	eresis			
			Bit 4	AL4 0 = Devia	tion 1 = Hyste	eresis			
			Bit 5	0 = Deviation in	Menu 1 = Omit	ted			
69	0045	Rate	00-0F	00 = A&B, 01 = /	AOnly, 02 = Batch	۱,			
	Input			03 = A_Atot, 05	= A_Btot, 0B = A-	+В,			
	Туре			OC = A-B, OD = A	$A^*B, OE = A/B, OF$	= A/B-1			
		Period	10-1E	10 = A&B, 11 = /	AOnly				
				1B = A + B, 1C = A	A-B, 1D = A*B, 1E	E = A/B			
		Total	20-2E	20 = Total A&B,	•				
				— ,	= Burst=26, 27 =	— /			
					= A_Binh, 2B = A	+B, 2C = A-B,			
				$2D = A^*B, 2E = A$					
		Time	41-42	41 = Time Interval A to B					
		Interval		42 = 1 / (A to B)					
		Stopwatch	50-53	50 = A to A,					
				51 = A to B					
				52 = 1 / (A to A)					
		Dharas	01.00	53 = 1 / (A to B)					
		Phase	61-62	61 = 0.360	0				
		Duty Cycle	71	62 = -180 to +18	50				
		Duty Cycle	71	A to B	nnut				
		V-to-F	XY	X = 8, 4-20 mA i	•				
		Signal Conditioner		X = 9, 0-1 mA in	•				
		Conditioner		X = A, 0-10V inp Y = 1, A only	uı				
				Y = 1, A only $Y = 2$, Batch					
				Y = 2, batch Y = 3, A to A tota	al				
				Y = 5, A to A to RY = F, 1/A	A1				
		Quadrature	C0-C1	CO = Total					
				C1 = Rate					
70	0046	Setup	Bits 3:0	Ctrl In 1	Ctrl In 2	Both Reset			
		M = Meter	Hex O	Meter Reset	Function Reset	MReset			
		F = Function	Hex 1	Meter Reset	Meter Hold	MReset			
		D = Display	Hex 2	Meter Reset	Peak or Valley	MReset			
			Hex 3	Meter Reset	External Gate	MReset			
			Hex 4	Function Reset	Meter Hold	MReset			

				N7 II		
			Hex 5	Valley	Peak	FRest
			Hex 6	Function Reset		MReset
			Hex 7	Meter Hold	Peak or Valley	
			Hex 8	Reset Total A	Reset Total B	FReset
				Force Alarm1	Force Alarm2	No Action
			Hex A	Meter Reset	Display Blank	MReset
			Hex B	Function Reset	Display Blank	MReset
			Hex C	Meter Hold	Display Blank	MReset
			Hex D	Peak or Valley	Display Blank	FReset
			Hex E	Display Blank	External Gate	MReset
			Hex F	ltem2	Item3 Item 1	1 = Neither/Both
			Hex F	Tare Enable	Tare (Remote Di	splay Only)
			Bit 4	0 = Scale2 using	g Scale, Offset	
				1 = Scale2 using	g Coordinates of 2	2 Points
			Bit 5	0 = Scale1 using	g Scale, Offset	
				1 = Scale1 using	g Coordinates of 2	2 Points
			Bit 6	0 = Blank leadin	g zeros	
				1 = Display lead	ing zeros	
			Bit 7	0 = Zero Total u	pon Power-On	
				1 = Restore Tota	al upon Power-On	1
71	0047	Filter	Bits 2:0	1 = .1S, 2 = .2S	, 3 = .4S, 4=.8S, 4	5=1.6S,
				6 = 3.2S, 7=6.4S	S	
			Bit 3	0 = Low Adaptiv	re, 1 = High Adapt	ive
			Bit 4	0 = Display Unfi	Itered, 1=Display	Filtered
			Bit 5	0 = Peak, Valley	of Unfiltered	
				1 = Peak,Valley	of Filtered	
			Bit 6	0 = Adaptive Filt		
				1 = Conventiona	ıl Filter	
72	0048	Options	Do Not U	se.		
73	0049	Serial	Bits 3:0	Time between C	ontinuous Serial (Outputs
		Config 1		Hex 0=.017S, 1=	=.28S, 2=.57S, 3=	1.1S, 4=2.3S,
					7=18.1S, 8=36.3	
				A=2M25S, B=4M	M50S, C=9M40S,	D=19M20S,
				E=38M41S, F=7	7M21S	
			Bits 6:4	Baud Rate		
				000 = 300, 001	= 600, 010 = 120	0, 011 = 2400,
				100 = 4800, 101	I = 9600, 110 = 1	9200
			Bit 7	0 = Send Unfilte	red value, 1 = Ser	nd Filtered Val

	00/1			
74	004A	Serial	Bits 4:0	Meter Serial Address (0-31) [Non-Modbus]
		Config 2		Hex $0 = Broadcast (01 = 1 to 0A = 10),$
				0F = 15, 10 = 16, 1F = 31
			Bit 5	0 = Continuous Mode, 1 = Command Mode
			Bit 6	0 = No Alarm data w/ readings, 1 = Alarm data
			Bit 7	0 = No LF following CR, 1 = LF following CR
75	004B	Serial	Bits 2:0	Data sent in serial output
		Config 3		0 = AII active Items, 1 = Item1, 2 = Item2,
				3 = Item3, 4 = Peak, 5 = All active Items+
				Peak, 6 = Valley, 7 = All active Items + Peak +
				Valley
			Bit 3	0 = Termination chars at end of all items
				1 = Termination chars at end of each item
			Bit 4	0 = Non-latching RTS
				1 = Latching RTS
			Bit 5	0 = * is Recognition Character
				1 = Custom Recognition Character
			Bit 6	0 = No Serial Start / Stop Characters
				1 = Start / Stop Characters
			Bit 7	0 = Full Duplex, 1 = Half Duplex
76	004C	Serial	Bits 1:0	00 = No Parity
		Config 4		01 = Odd Parity
				11 = Even Parity
			Bits 3:2	00 = Custom ASCII
				01 = Modbus RTU,
				10 = Modbus ASCII
			Bits 5:4	Modbus ASCII Gap Timeout
	00.45	0 a m fi	DH C	00 = 1S, 01 = 3S, 10 = 5S, 11 = 10S
77	004D	Config	Bit 0	0 = VF Batch, Atot zero cutoff
			D:+ 4	1 = Allow negative values
			Bit 1	0 = Calculate Rate value
			Dite 0.0	1 = Calculate Square Root of Rate
			BIIS 3:2	00 = Basic Counter, 01 = Extended Counter
				10 = Custom Curve #1
			Dito 7.4	11=Custom Curve #2 (if V-to-F)
			BIIS / :4	0 = Exponential Overload
				1 = 999999 Overload
				2 = One Right Hand Dummy Zero
				3 = Two Right Hand Dummy Zeros
				4 = Clock Time in Seconds
				5 = Clock Time in HH.MM.SS Format
				6 = Remote Display, HKL Command

	1	1	1	
				7 = Remote Display, Value
				8 = 1st Value in String
				9 = 2nd Value in String
				A = 3rd Value in String
				B = 4 th Value in String
				C = Remote Display using Start, Stop, Skip,
				Show Characters
78	004E	Lockout 1		0 = Enabled, 1 = Locked out
			Bit 0	Filter
			Bit 1	Gate Time, Timeout, Batch, Preset, Pulses, Cutoff
			Bit 2	Setup, Config, Display Number
			Bit 3	Input Type
			Bit 4	Setpoint Programming
			Bit 5	Alarm Config, Deviation / Hysteresis
			Bit 6	Scale, Offset, Resolution, 2 Coordinates
			Bit 7	Slope, Decimal Points
79	004F	Lockout 2		0 = Enabled, 1 = Locked out
			Bit 0	Change Item# displayed
			Bit 1	Calibration
			Bit 2	Serial Comm Config
			Bit 3	Analog Out Scaling & Setup
			Bit 4	Front Panel Meter Reset
			Bit 5	Front Panel Function Reset
			Bit 6	View Setpoints
			Bit 7	View Peak
80	50	Batch	Bit 0	0 = Display "rEADy" after Reset
		Operation		1 = Start
			Bit 1	0 = Item2 is Grand Total
				1 = Item2 is Total Number of Batches
			Bit 2	0 = Gate Time resets
				1 = Control Input 2 resets
			Bit 3	0 = Reset to Zero, Count Up
				1 = Reset to SETPT1, Count Down
			Bits 5:4	Residual Input
				0,2 = Input Discard, Grand Total Discard
				1 = Input Accept, Grand Total Discard
				3 = Input Accept, Grand Total Accept

81	0051	Alarm	Bits 1:0	Setpoint 2
		Source	Bits 3:2	Setpoint 1
			Bits 5:4	Setpoint 4
			Bits 7:6	Setpoint 3
				For each Setpoint: 00 = Filtered Item,
			01 = Item1, 10 = Item2, 11 = Item3	
82	0052	Analog Out	Bits1:0 0 = Filtered Item, 1 = Item1, 2 = Item2, 3 = Item3	
		Setup	Bit 2	0 = Current Output, 1 = Voltage Output
83	0053	Scale	Bits 3:0	Scale1 Multiplier
		Multiplier	Bits 7:4	Scale2 Multiplier
				0 = .00001, 1 = .0001, 2 = .001, 3 = .01,
				4 = .1, 5 = 1, 6 = 10, 7 = 100, 8 = 1000,
				9 = 10000, A = 100000
84	0054	Trigger	Bit 0	0 = Positive Slope, B Input
		Slope		1 = Negative Slope, B Input
			Bit 1	0 = Positive Slope, A Input
				1 = Negative Slope, A Input
85	0055	Display Item	Bits 1:0	1 = Item1, 2 = Item2, 3 =Item3
			Bits 3:2	Display Response to Peak Button:
				00 = Peak, 01 = Valley, 10 = Peak then Valley
86	0056	Resolution	Bits 3:0	0 = .00001, 1= .0001, 2 = .001, 3 = .01,
				4 = .1, 5 = 1, 6 = 10, 7 = 100, 8 = 1000,
				9 = 10000, A = 100000
87	0057	System	Bits 3:0	DecPt1
		Decimal	Bits 7:4	DecPt2
		Point		1 = dddddd., 2 = ddddd.d, 3 = dddd.dd,
				4 = ddd.ddd, 5 = dd.dddd, 6 = d.ddddd

Special Characters

88	0058	Recognition	Bits 7:0 ASCII Hex Character
89	0059	Remote Start	Bits 7:0 ASCII Hex Character
90	005A	Remote Stop	Bits 7:0 ASCII Hex Character
91	005B	Remote Skip	Bits 7:0 ASCII Hex Character
92	005C	Remote Show	Bits 7:0 ASCII Hex Character
93	005D	Serial Transm. Start	Bits 7:0 ASCII Hex Character
94	005E	Serial Transm. Stop	Bits 7:0 ASCII Hex Character
95	005F	Modbus Address	Bits 7:0 Hex Value of Decimal Address 1-255
96	60	Reserved	
97	61	Reserved	Do not use

READ ONLY (FC03) – Data Type B16

100	0064	Analog Output DAC Type	0 = none, 1 = 1 output, unipolar (12-bit, pre 2009) 2 = 1 output, unipolar (16-bit, pre 2009) 3 = 1 output, uni or bipolar (16-bit, post 2009) 4 = 2 outputs, unipolar (16-bit, post 2009)
101	0065	Device Type	Bits 7:0 01 = DPM meter 03 = Counter/Timer meter 05 = DPM transmitter 07 = Counter/Timer transmitter
102	0066	Revision	Bits 7:0 Hex value of Decimal Revision number

WRITE ONLY FC10 (dec16) – Data Type 2C32

105	0069	Display Data	Hi Word Displayed
106	006A	Display Data	Lo Word Displayed
107	006B	Data to Item3	Hi Word Applied to Item3
108	006C	Data to Item3	Lo Word Applied to Item3
109	006D	Data to Both	Hi Word Displayed and Applied to Item3
110	006E	Data to Both	Lo Word Displayed and Applied to Item3

WRITE ONLY FC10 (dec16) – Data Type B16

111	006F	Force Alarms, Remote	Bit 0 = Alarm 1
		Display Mode	Bit 1 = Alarm 2
			Bit 2 = Alarm 3
			Bit 3 = Alarm 4

Please see the description at the end of Section 10 for comparing the Remote Data to the Relay Setpoints or using it as the source for setting the Analog Output.

25. WARRANTY

Yokogawa Corporation of America warrants its products against defects in materials or workmanship for a period of one year from the date of purchase.

In the event of a defect during the warranty period, the unit should be returned, freight prepaid (and all duties and taxes) by the Buyer, to the authorized Yokogawa distributor where the unit was purchased. The distributor, at its option, will repair or replace the defective unit. The unit will be returned to the buyer with freight charges prepaid by the distributor.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from:

- 1. Improper or inadequate maintenance by Buyer.
- 2. Unauthorized modification or misuse.
- 3. Operation outside the environmental specifications of the product.
- 4. Mishandling or abuse.

The warranty set forth above is exclusive and no other warranty, whether written or oral, is expressed or implied. Yokogawa specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES

The remedies provided herein are Buyer's sole and exclusive remedies. In no event shall Yokogawa be liable for direct, indirect, incidental or consequential damages (including loss of profits) whether based on contract, tort, or any other legal theory.